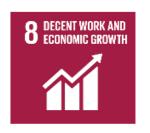
11th Regional EST Forum in Asia

2-5 October 2018, Ulaanbaatar

Sustainable Urban Transport Index for Asian Cities

Madan B. Regmi, DEng Transport Division UNESCAP, Bangkok

2030 Agenda for Sustainable Development



Sustainable Development Goals & Transport

☐ Target 11.2: By 2030, provide access to safe, affordable, accessible and sustainable transport systems for all, improving road safety, notably by expanding public transport, with special attention to the needs of those in vulnerable situations, women, children, persons with disabilities and older persons

□ New	Urban A	Agenda:
-------	---------	---------

- ☐ Promote access for all-safe, affordable, sustainable urban mobility
- ☐ TOD
- Develop Comprehensive Mobility Plan
- ☐ Develop *mechanisms and frameworks*
- ☐ Greater coordination of implementation

Sustainable Urban Transport Index

- □ To measure urban transport and progress towards Sustainable Development Goals (SDGs) in Asian cities
- To help summarize, compare and track the performance of urban transport in cities
- To facilitate discussion to develop plans and policies to improve urban transport
- Simple Approach:
 - Not too many indicators
 - Not complex calculations,
 - ☐ Simple, based on existing methodology, policies

Framework, Foundation & Dimensions

Framework	Dimensions			
Sustainable	Economic Dimension impacts			
Development	Social Dimension impacts			
Development	Environment Dimension impacts			
Custainable	Avoid strategy			
Sustainable Mobility Paradigm	Shift strategy			
Mobility Faradigiti	Improve strategy			
	3.6 Deaths and injuries from road traffic			
	9.1 Quality, reliable, sustainable, resilient			
	infrastructure			
CDC Tawaraha	11.2 Access to safe, affordable, accessible and			
SDG Targets Relevance for	sustainable transport systems for all,			
Urban Transport	11.6 Adverse environmental impact including			
orban nansport	air quality			
	7.3 Improving energy efficiency			
FSCAP	13.2 Integrate climate change measures 5			

Most important references

Extensive literature review of indicators

UN Habitat (2016)

□ Suggests indicators to measure SDG goal 11, incl. target 11.2 on urban transport

WBCSD (2016) Sustainable Mobility 2.0

- 19 urban transport indicators
- Applied in six cities, three in Asia
- Detailed methodology

Arthur D Little/UITP (2014)

- 19 urban transport indicators
- □ 84 cities are covered, 30 in Asia
- Less detail, wider coverage

SUTE system, Korea (KOTI 2015)

- 24 indicators
- Applied annually to several Korean cites
- Detailed methodology

Identification of potential indicators

- 420 individual urban transport indicators identified
- Reduced to a shortlist of 20 most relevant indicators
- Subjectively scored using two sets of criteria
 - **Relevance** for Sustainable Transport framework
 - Methodological quality
- Resulting list of 10 indicators in four domains:
 - Transport system, Social, Economic & Environmental domain
- Reviewed & agreed at two UNESCAP meetings:
 - Expert Group Meeting, Kathmandu, September 2016
 - Regional Meeting, Jakarta, March 2017

10 SUTI Indicators

NI -	In dianton	Measurement	\ \ /-!- -+-	Range	
No	Indicators	units	Weights	MIN	MAX
	Extent to which transport plans cover public				
1	transport, intermodal facilities and infrastructure	0 - 16 scale	0.1	0	16
	for active modes				
2	Modal share of active and public transport in	Trips/mode	0.1	10	90
	commuting	share	0.1		30
3	Convenient access to public transport service	% of	0.1	20	100
	convenient decess to public transport service	population			
4	Public transport quality and reliability	% satisfied	0.1	30	95
5	Traffic fatalities per 100,000 inhabitants	No of fatalities	0.1	35	0
6	Affordability – travel costs as part of income	% of income	0.1	35	3.5
7	Operational costs of the public transport system	Cost recovery	0.1	22	175
		ratio			
8	Investment in public transportation systems	% of total	0.1	0	50
		investment			
9	Air quality (pm10)	μg/m3	0.1	150	10
10	Greenhouse gas emissions from transport	CO2 Eq. Tons	0.1	2.75	0
UNI	SUM				8

All 10 indicators are described with

- Indicator relevance for sustainable transport framework
- Proposed definition
- Unit of measurement
- Interpretation in regard to sustainable transport
- Minimum and maximum values of indicator scale to use in the index construction
- Sources in the literature
- Comments on data availability and methods to provide data
- Examples

Normalization & SUTI Calculation

Linear Normalization of indicators 1-100 scale

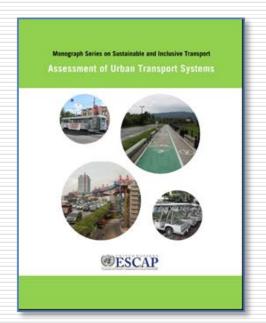
$$Z_{i,c} = \frac{(X_{i,c}) - (X_{min,i})}{(X_{max,i}) - (X_{min,i})} * 100$$

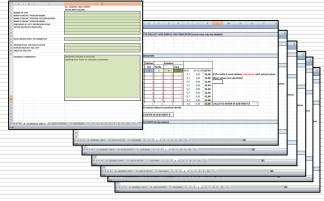
$$SUTI = \sqrt[10]{i1 * i2 * i3 ... i10}$$

Where i1...i10 are the indicators

Geometric mean method chosen (similar to HDI)

'Equal weight' to each SUTI indicator is applied

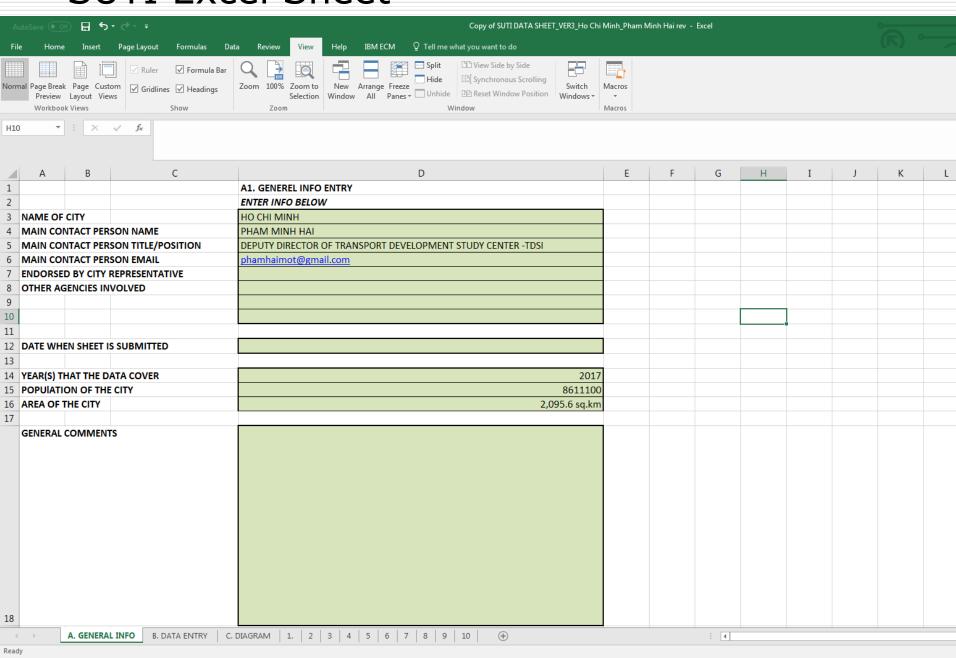

SUTI-Publication, Data Collection Guideline & Excel Calculation Sheet


Monograph Series- Assessment of Urban Transport Systems

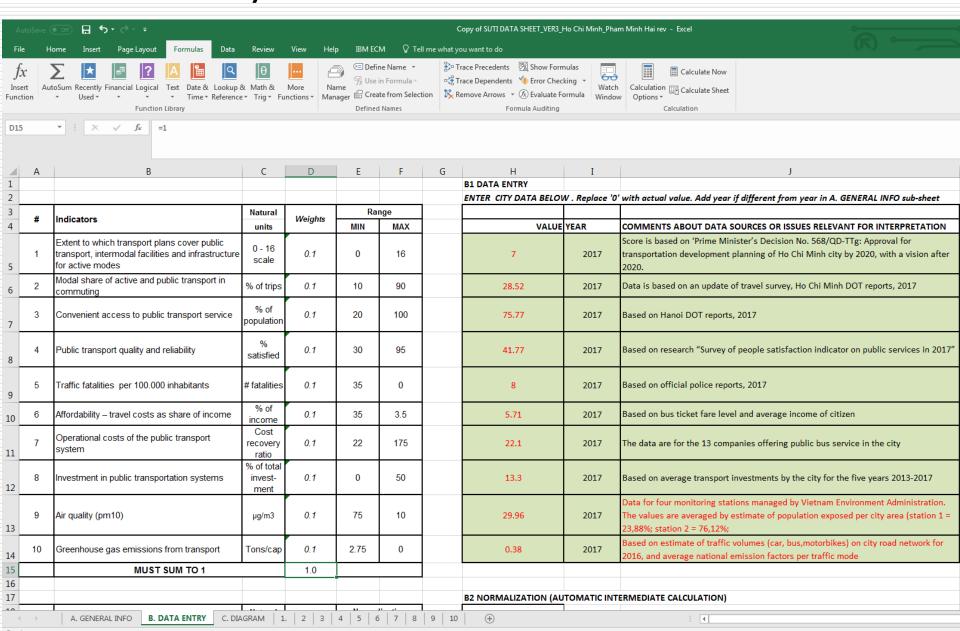
http://www.unescap.org/publications/monograph-series-sustainable-and-inclusive-transport-assessment-urban-transport-systems

Data Collection Guideline and Excel Sheet

http://www.unescap.org/events/capacity-building-workshop-sustainable-urban-transport-index-suti


SUTI Guidelines and Excel sheet

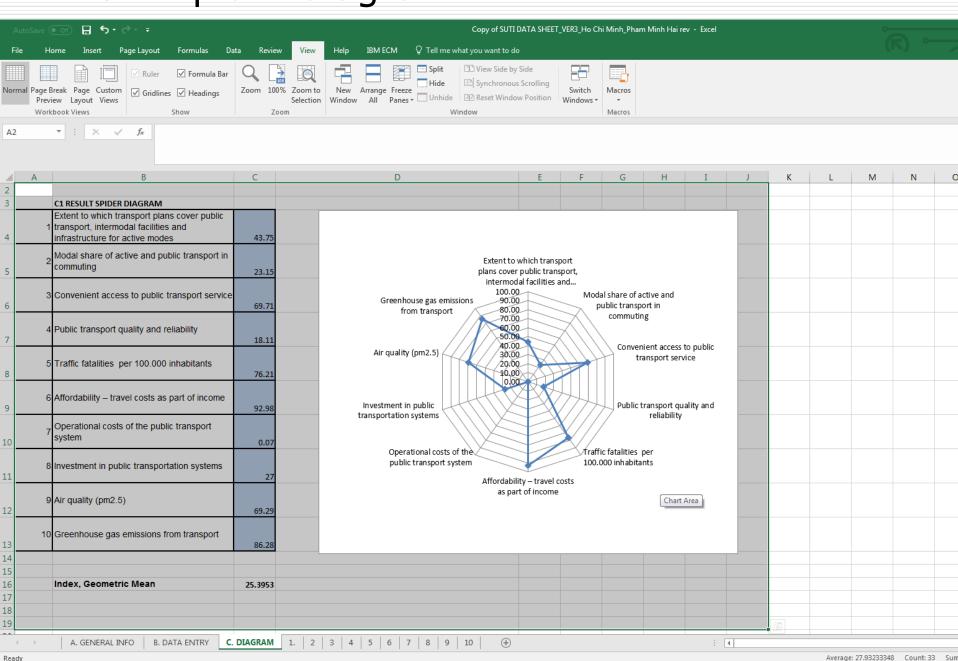
- Support to SUTI application in cities
- Ensure consistency of SUTI calculation
- Allow comparability across cities
- Provide a common approach to:
 - Identify and document data for SUTI
 - Operate and calculate data
 - Calculate SUTI and Present results



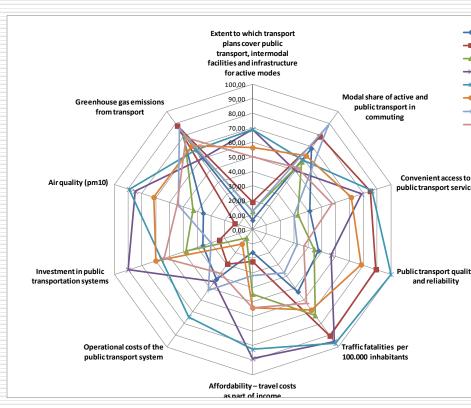
- Data for each indicator entered in SUTI data sheet
- Automatic normalization, calculation of SUTI, and creation of spider diagram

SUTI Excel Sheet

Data entry and normalization



SUTI spider diagram

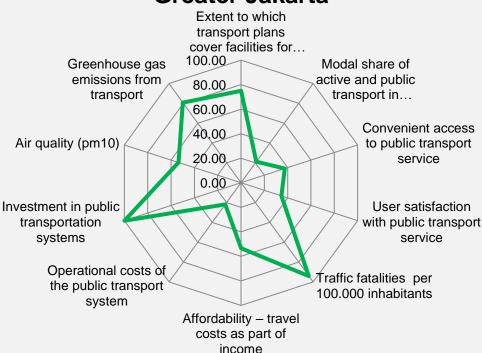

Spider diagram

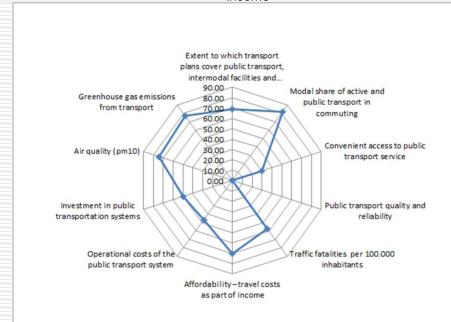
Single city

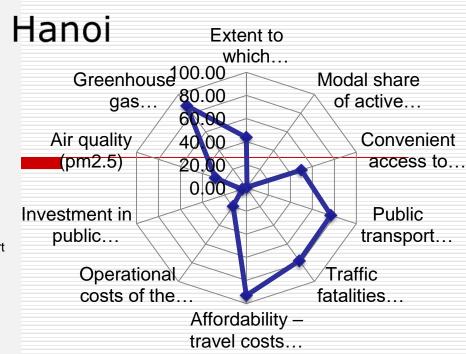
Extent to which transport plans cover public transport, intermodal... Modal share of Greenhouse gas 100.00 active and public emissions from 80.00 transport in transport commuting 60.00 Convenient Air quality 40.00 access to public (pm10) 20.00 transport service 0.00 Investment in **Public transport** public quality and transportation reliability systems Operational Traffic fatalities costs of the per 100.000 public transport inhabitants system Affordability travel costs as

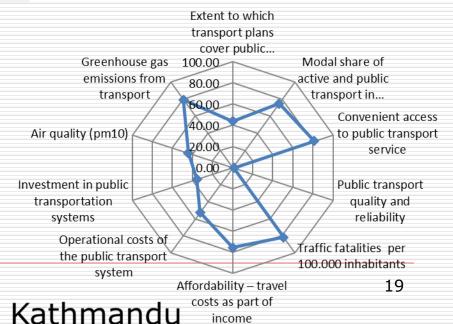
Economic and Social Commission for Asia and the Pacific

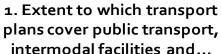
Multiple City

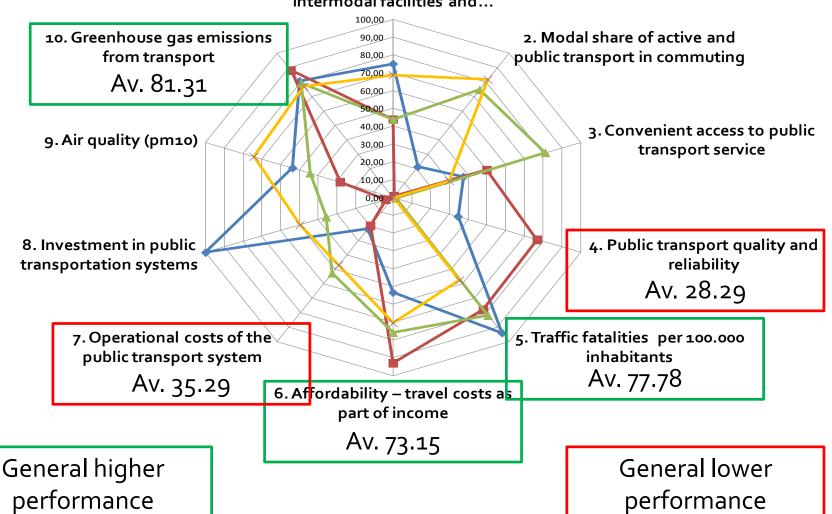



SUTI Pilot Application

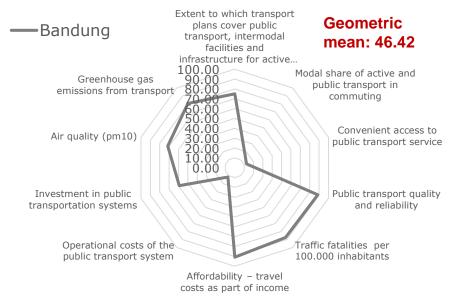

		Actual values			Normalized values				
No	Indicators	Jakarta	Hanoi	Kathmand u	Colombo	Jakarta	Hanoi	Kathma ndu	Colomb
	Extent to which transport plans								
1	cover public transport, intermodal facilities and infrastructure for active modes	12.00	7.00	7.00	11	75.00	43.75	43.75	68.75
2	Modal share of active and public transport in commuting	27.00	10.65	69.77	75.45	21.25	0.81	74.71	81.81
3	Convenient access to public transport service	50.00	60.00	85.00	44	37.50	50.00	81.25	30.00
4	Public transport quality and reliability	52.50	79.97	31.00	30.1	34.62	76.87	1.54	0.15
5	Traffic fatalities per 100.000 inhabitants	2.10	7.75	6.33	14.9	94.00	77.87	81.91	57.34
6	Affordability – travel costs as part of income	18.20	5.71	11.10	12.82	53.33	92.98	75.87	70.41
7	Operational costs of the public transport system	55.40	51.95	102.40	93.8	21.83	19.57	52.55	46.93
8	Investment in public transportation systems	50.00	1.96	17.84	24.8	100.00	3.93	35.68	49.60
9	Air quality (pm10)	75.00	56.64	88.00	46	53.57	28.24	44.29	74.29
10	Greenhouse gas emissions from transport	0.53	0.33	0.57	0.63	80.73	88.16	79.27	18 77.09

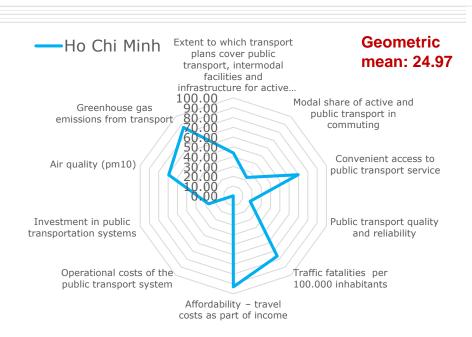

Greater Jakarta

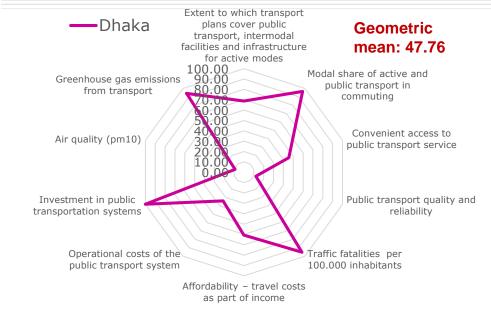


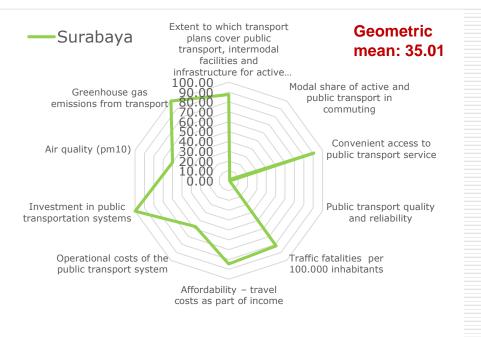

Calamba

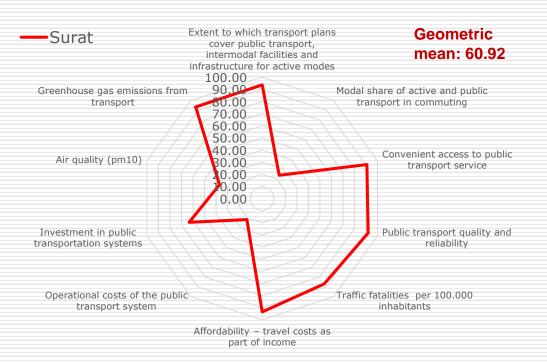
→Jakarta → Hanoi → Kathmandu → Colombo


Result of SUTI Analysis


Jakarta	52.5
Kathmandu	47.8
Colombo	32.70
Hanoi	32.2




Capacity Building Workshop on SUTI in Colombo, October 2017



Surat	60.92
Dhaka	47.76
Bandung	46.42
Surabaya	35.01
Ho Chi Minh	24.96

Workshop on Urban Mobility and Sustainable Urban Transport Index, 12-13 September 2018, Dhaka

SUTI Next Steps

- □ SUTI can help assess performance of cities across ten key indicators and compare with peers cities
- Support refining policies and strategies to improve urban mobility
- ☐ 9 cities delivered all 10 SUTI indicators and index
- Draw implication for urban transport planning
- ☐ Follow-up on SUTI result & track progress (every 2 year)
- Data collection, availability and standardization
- □ Voluntary National Review (VNR) at HLPF, New York
- UNESCAP ready to collaborate- collaborating partners
- ☐ Further interest from Bangladesh, Bhutan, India, Islamic Republic of Iran

5th Session of the Committee on Transport, 19-21 November 2018, Bangkok

Thank you

regmi.unescap@un.org

