

Comparative Life Cycle Assessment of Cellulose-based Masks and Plastic-based Masks

Yong-Chul Jang* and Howon Lee

UNCRD 12th 3R and Circular Economy Forum

March 4 2025

Chungnam National University

1. Research Background

1-1. Introduction

- After COVID-19 pandemic, there is a rapid increased consumption of single-use masks (12 billions in 2019 vs. 402 billion in 2021)
- Single-use masks are almost all made of Polypropylene(PP).
- During life cycle stage of the masks, several environmental issues are related to resource depletion, greenhouse gas emission, microplastic in the environment upon improper disposal
- Bio-based masks, biodegradable masks can be viable options to the alternative to PP masks

[Fig] Recent global sales of face-masks

(ref: Statista, https://www.statista.com/chart/29100/global-face-mask-sales/)

[Fig] Cellulose fiber (ref: Korea textile news)

1. Research Background

• In 2020, 6.7 billions of single-use face masks were consumed in Korea and treated by incineration (64%) and landfilling (31%).

[Fig] Material flow of plastic-based single use face masks in Korea (2020)

1. Research Objective

1-2. Objectives

- ① Conduct LCA study on cellulose-based masks and plastic-based masks
- O Evaluate environmental impacts of cellulose-based masks and plastic-based masks by

life cycle

③ Assess carbon footprints of cellulose-based masks and plastic-based masks

2-1. Goal and Definition

- Goal: evaluate environmental impacts of cellulose-based masks and pp-based masks
- Functional unit: 1 ton KF-94 face single-use masks
- System boundary: Cradle to Grave
- LCA software: SimaPro v.9.4.0.2
- Impact assessment method: IMPACT 2002+
- Mid-point approach: 15 impact categories

[Table] Impact 2002+ method and impact category

category	unit	
Carcinogens	kg C₂H₃Cl eq	
Non-carcinogens	kg C₂H₃Cl eq	
Respiratory inorganics	kg PM2.5 eq	
Ionizing radiation	Bq C-14 eq	
Ozone layer depletion	kg CFC-11 eq	
Respiratory organics	kg C_2H_4 eq	
Aquatic ecotoxicity	kg TEG water	
Terrestrial ecotoxicity	kg TEG soil	
Terrestrial acid/nutri	kg SO₂ eq	
Land occupation	m ² org.arable	
Aquatic acidification	kg SO ₂ eq	
Aquatic eutrophication	kg PO₄ P-lim	
Global warming	kg CO ₂ eq	
Non-renewable energy	MJ primary	
Mineral extraction	MJ surplus	

2-2. Database and assumptions

Data collection: field survey, literature

and report

• Unit process data: Ecoinvent 3.8, USLCI

Database

(if LCI Database is unavailable, simila

process data were used)

• Packaging data for masks are excluded

rature	Life cycle	Contents	References
		Pre-production stages of plastic- based single-use masks	Franklin Associates report, 2021
	Pre-production stages		Chen , 2009
, USLCI		Pre-production stages of cellulose-	Krexner et al., 2022
		שמשכע שוואוכיישב ווומאש	Corcelli et al., 2022
	Production stages	Production stages of plastic-based and cellulose-based single-use masks	Turkmen, 2021
imilar		Transportation means of plastic-	
	Transportation stages	based and cellulose-based single-use	Turkmen, 2021
		masks	
			Korea Ministry of Environment: 2022
voludod			Status of waste generation and
kciudeu	Disposal stages	Status of waste generation and	disposal
	Disposal stages	disposal	Anti-Corruption and Civil Rights
			Commission of Korea: Single-use face
			masks waste disposal plan

[Table] Data acquisition related to single-use face masks life cycle in this study

2-3. System boundary for plastic-based masks

[Fig] System boundary for plastic-based masks during LCA study

2-4. System boundary for cellulose-based masks

[Fig] System boundary for cellulose-based masks during LCA study

3-1. Impact assessment of plastic-based masks by LCA(1 ton)

[Table] Impact assessment results of plastic-based masks (mid-point)

Impact category	Unit	Total	Production	Transport	Disposal
	kg CO₂ eq	7.18E+03	5.34E+03	1.82E+02	1.65E+03
Global warming	%	100	74.5	2.5	23.0
C :	kg C ₂ H ₃ Cl eq	2.16E+02	2.13E+02	1.32E+00	1.17E+00
Carcinogens	%	100	98.9	0.7	0.4
	MJ surplus	2.48E+02	2.45E+02	2.29E+00	3.72E-01
Mineral extraction	%	100	98.9	0.9	0.2

- Production stage is a dominant factor contributing all the impacts
- Global warming impact: 7.18 ton CO₂ eq, Ozone depletion
 2.02E-04 kg CFC-11 eq, mineral extraction 248 MJ surplus
- Global warming impact category: Production stage 5.34 ton

 CO_2 eq(74.5%), disposal stage 1.65 ton CO_2 eq(23%), and

transportation 0.18 ton CO_2 eq(2.5%),

3-2. Contribution analysis of unit processes of plastic-based masks to global warming impact

[Figure] Contribution analysis of unit processes of plastic-based masks to global warming impact

3-3. Impact assessment of cellulose-based masks by LCA(1 ton)

[Table] Impact assessment results of cellulose-based masks (mid-point)

Impact category	Unit	Total	Production	Transport	Disposal
	kg CO ₂ eq	6.06E+03	4.40E+03	2.46E+02	1.41E+03
Global warming	%	100	72.6	4.1	23.3
Carcinogens	kg C ₂ H ₃ Cl eq	1.93E+02	1.38E+02	4.25E+00	3.93E+02
	%	100	72.9	0.7	26.4
	MJ surplus	2.63E+02	2.43E+02	3.29E+00	1.65E+01
Mineral extraction	%	100	92.4	1.3	6.3

- Production stage is a dominant factor contributing all the impacts, while non-carcinogens category, disposal stage 393 kg C_2H_3CI eq(67%)
- Global warming impact: 6.06 ton CO₂ eq, Ozone depletion
 3.92E-04 kg CFC-11 eq, mineral extraction 263 MJ surplus
- Global warming impact category: Production stage 4.40 ton

 CO_2 eq(72.6%), transportation 0.24 ton CO_2 eq(4.1%),

disposal stage 1.41 ton CO₂ eq(23.3%)로 나타남

3-4. Contribution analysis of unit processes of plastic-based masks to global warming impact

Unit process Climate change Impa (kg CO ₂ eq)	
Aluminum	1,218 (21%)
Biowaste incineration	825 (14%)
Electricity	720 (12%)
PP textile	606 (10%)
Roundwood	432 (7%)
Polyurethane	380 (6%)
Others	1,830 (30%)

[Figure] Contribution analysis of unit processes of cellulose-based masks to global warming impact (kg CO2 eq)

4. Summary and Conclusion

Summary and implications

- We evaluated the environmental impacts of two different single-use masks systems (plastic-based vs. cellulose-based)
- 2) In the global warming impact category, 1 ton cellulose-based masks resulted in 6.06 ton CO_2 eq, while ppbased masks contributed to 7.18 ton CO_2 eq
- 3) In many impact categories, the environmental impacts of cellulose-based masks were relatively lower than those of plastic-based masks.
- Production stage is the major factor contributing to all the impacts by consuming energy, resources, and pollutants
- 5) Further study is warranted to examine life cycle cost analysis for these two systems

Thank you for you attention

Prof. Yong-Chul Jang gogator@cnu.ac.kr Chungnam National University

2-5. Life cycle inventory data for plastic-based masks

[Table] Data Inventory for pre-manufacturing stage for plastic-based masks

Туре		materials	value	unit
	Raw	Propylene	834.2	kg
	aux	Nitrogen	52.7	kg
Input	aux	electricity	246.8	kWh
	aux	Natural gas	28.0	m³
	aux	water	2,468	kg
output	products	PP resin	822.7	kg
	Air emissions	CO ₂ , NMVOC, dusts	8.4	kg
	Water emission	BOD, COD, zinc	0.03	kg

[Table] Data Inventory for manufacturing stage for plasticbased masks

구분	Materials/substances	value	unit
Filter	PP resin textile, spun bond	822.7	kg
Ear straps	Polyurethane	83.3	kg
Nose guard	Aluminum	94.0	kg
assembly	electricity	534.2	kWh

Table] Data	Inventory for	transportation	stage for	plastic-
	bas	ed masks	-	-

Туре	method	distance
Raw material trans 1 (oil-raw supply)	Pipeline	30 km
Raw material trans 2 (raw supply-manufacture)	3.5-7.5 ton truck	50 km
Product trans (manufacture-sales)	3.5-7.5ton truck	200 km
Waste trans (collection-incineration)	MSW collection truck	20 km
Waste trans (collection-landfills)	MSW collection truck	20 km

[Table] Data Inventory for disposal stage for plastic-based masks

method	ratio
incineration	64%
landfills	31%
loss	5%

2-6. Life cycle inventory data for cellulose-based masks

ty	ре	material	value	unit
		Forest	0.002	ha
	input	Electricity	0.1	kWh
Silviculture		Diesel	3	kg
	output	CO ₂ , SO ₂ , NO _X	10.6	kg
		wood	12.1	m³
		wood	12.1	m ³
	input	electricity	39	MJ
Sawmill		Steam	82	MJ
operation	output	CO ₂ , SO ₂ , NO _X	371	g
		Saw dust	5.4	m ³
		Saw dust	5.4	m ³
	input	Electricity	137	MJ
Wood chip		Diesel	0.042	kg
production	output	CO ₂ , SO ₂ , NO _X	482	g
		Wood chips	822.7	kg
		Wood chip	822.7	kg
Cellulose	input	water	40,370	kg
extraction		electricity	265.6	kWh
	output	cellulose	575.9	kg

[Table] Data Inventory for pre-manufacturing stage for cellulose-based masks

[Table] Data Inventory for manufacturing stage for cellulose-based masks

Material	Туре	value	unit	
PP resin textile, spun bond		246.8	ka	
Filler	Cellulose fiber 575.9 Kg		ку	
Ear straps	Polyurethane	83.3	kg	
Nose guard	Aluminum	94.0	kg	
assembly	electricity	534.2	kWh	

[Table] Data Inventory for transportation stage for cellulose-based masks

type	methods	distance
Raw material transport 1 (forest-woods)	7.5-16 ton truck	50 km
Raw material transport 2 (woods-chips)	3.5-7.5 ton truck	50 km
Raw material transport 3 (wood chips-cellulose extract)	3.5-7.5 ton truck	50 km
Raw material transport 4 (cellulose-masks manufact)	3.5-7.5 ton truck	50 km
Product transport (masks manuf-sales)	3.5-7.5 ton truck	200 km
Waste trans (collection-incineration)	MSW collection truck	20 km
Waste trans (collection-landfills)	MSW collection truck	20 km