Driving the Cement and Concrete Industry's Journey Towards Net Zero Carbon by 2050

Hao Wang

University of Southern Queensland Former Editor-in-Chief of *Composites Part B* hao.wang@unisq.edu.au

Geopolymer – Low Carbon Concrete

Cement and Concrete Industry

Largest used materials on earth

Annual cement production 3.5 billion tonnes, consequently concrete production is 35 billion (5 ton/person).

Buildings and infrastructure

The base of our modern life.

Cheapest in strength build-up

Cement Production

Cement and Concrete

- Raw materials: limestone and clay 4 billion tons; aggregates – 30 billion tons; water 2 billion liter.
- Energy: third largest industrial energy consumer (1400°C calcination, 900°C preheating and milling).
- Carbon emission: 4 billion tons of greenhouse gas (8% of global emission).

- Huge amount of construction materials to meet the demand.
- Requirement for energy efficiency and environmental friendly.
- Concrete producers needs new, eco-compatible and costeffective materials for energy efficient building materials.
- Waste management is an increasingly complex and challenging task
 - abundant availability of fly ash (700 million tons per year, and only 14%. was utilized).
 - ground granulated blast furnace slag
 - red mud (from aluminum production industry)
 - river sludge

Old Fly Ash – ash pond

Billions of tonnes of fine grade fly ash currently reside within ash ponds alongside current coal burning power stations

Net Zero Strategies

- 1. Current OPC Production: Energy efficiency, new energy options, centralized plants.
- 2. Low Carbon Cement: Geopolymer.

cement

- 3. Low Cement Concrete:
 - Supplementary Cementitious Materials: fly ash, slag, silica fume, calcium carbonate natural pozzolans
 - LC³, limestone calcined clay cement

- reduce CO2 emissions by up to 40%, is made using limestone and low-grade clays which are available in abundant quantities.
- cost effective and does not require capital intensive modifications to existing cement plants.

- 4. High strength and high durability:
 - □ Ultra-high performance concrete (UHPC): 200MPa
 - High durability concrete
- 5. Demolished concrete utilization:
 - Coarse aggregate: Crushed concrete as coarse aggregate in new concrete mixes.
 - □ Subgrade layer of pavements.
 - □ Filler.
 - Supplementary cementitious material.
 - Feedstock for clinker production

- Challenges in using demolished concrete
 - Demolished concrete may have a large variation of raw materials and a higher rate of water absorption.
 - There are still challenges concerning the adoption and eco-efficiency of using recycled concrete.
 - There are still operational barriers that prevent the complete re-recycling of waste concretes.

Australia Low Carbone Concrete Projects

Wellcamp airport, Toowoomba (2013-2015)

Geopolymer concrete used throughout: 40,000m³, and 8,640 t CO₂ emission saving

- Turning node 16,000 m², 435 mm thick.
- Aprons and taxiways -32,000m², 435 mm thick.
- Hangars 2,500 m², 435 mm thick.

The Global Changing Building, UQ, Brisbane

- 5 storey building
- 33 precast geopolymer floor beams

0

Bridge deck, Brisbane, QLD, Australia

Footpath, Toowoomba, QLD, Australia

Conclusion

Cement and concrete industry's journey towards net zero is challenging but very rewarding. It needs all stakeholders to work together.