12th Regional 3R and Circular Economy Forum in Asia and the

Circularity towards water security in India

Theme: Realizing Circular Societies Towards Achieving SDGs and Carbon Neutrality in Asia-

Pacific

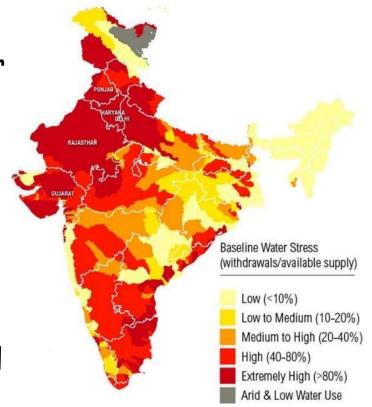
Presented by **Prof. Brajesh Kr Dubey**

Chairperson - School of Water Resources Professor – Dept of Civil Engineering

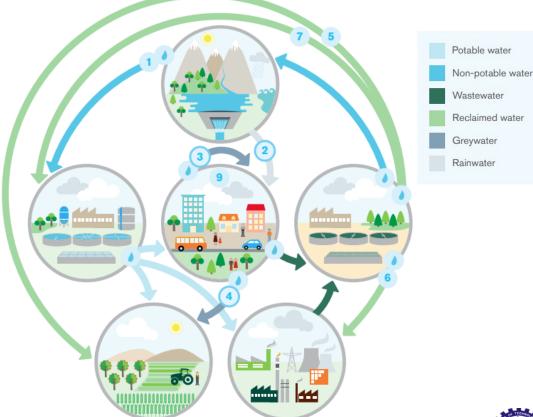
Indian Institute of Technology - Kharagpur

Circular Water Economy

A circular water economy (CWE) recycles and recovers resources within the water use and treatment cycle to maximize value for people, nature, and businesses.



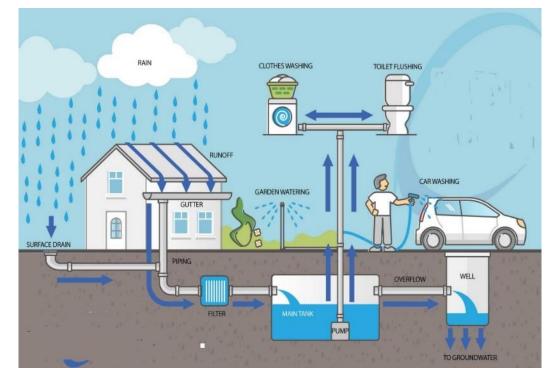
Source: Water in Circular Economy and Resilience (WICER)


Why the need of Circular water economy in India?

>Limited water resources. >Over-extraction of Groundwater > Dependence on Monsoon >Uneven distribution of freshwater >80% of freshwater available is used in agriculture >About 72% of wastewater is untreated (NITI Aayog) >Rapid urbanization and industrial growth

Water pathways in achieving Circular economy

- 1. Upstream Investment like stormwater regulation, water purification
- 2. Rainwater harvesting
- 3. Greywater Recycling for nonpotable reuse
- 4. Greywater for agriculture and aquaculture
- 5. Reuse for agriculture and aquaculture
- 6. Reuse water for industry
- 7. Direct potable reuse
- 8. Reduction in water consumption



Circular water Storage

Challenges:

- >Inadequate infrastructure
 and management
- >Uneven Monsoon
- >Increased evaporation rates
- Loss of traditional water harvesting systems (Khadins, Zabo)
- >Limited understanding of circular water practices

Source: https://www.eawater.com/casestudy/circular-economy-of-water/

Wastewater in the Circular economy

Policies

- · limited focus on reuse in national and state water
- policies · absence of proper incentives to promote reuse
- across sectors
- inconsistent policies across states

Technology

treatment plants

· lack of coverage

Institutions

· lack of interagency coordination

water

limited funds for wastewater treatment

· lack of rational pricing and cost recovery long-term O&M cost to run treatment plants not

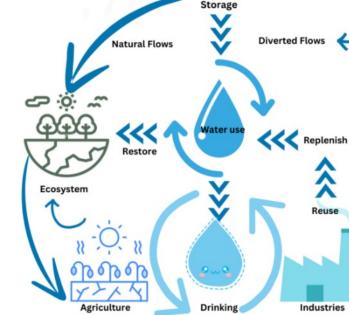
· public not willing to pay for wastewater

Finances

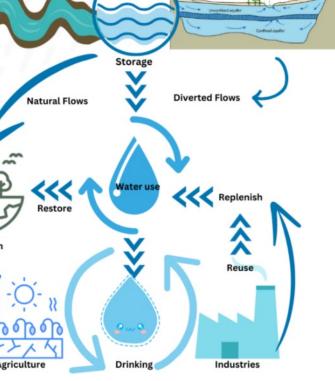
infrastructure

considered

treatment


 inadequate range of treatment technologies · lower treatment efficiency of available technologies · lack of required skills and capacities to effectively maintain

- · overlapping responsibilities and inefficient implementation of projects
- · perceived inferiority and social resistance of reuse projects
- · inefficiencies and slow decision-making


Key barriers to treated water reuse

Laws and Regulation

- legal mandates not supported adequately at administrative levels lack of enforcement of pollution
- monitoring and control · lack of overarching water directive
- · lack of regulatory standards for different end-use of reclaimed

Surface water

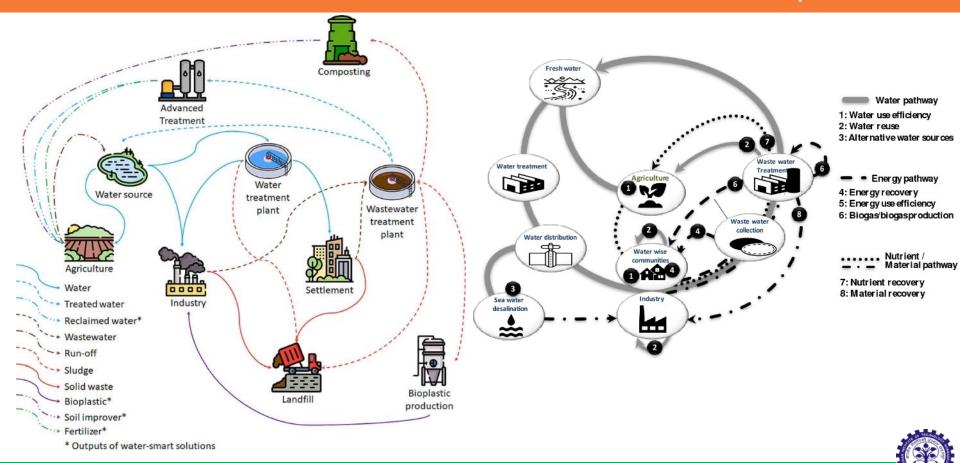
Freshwater

Resources

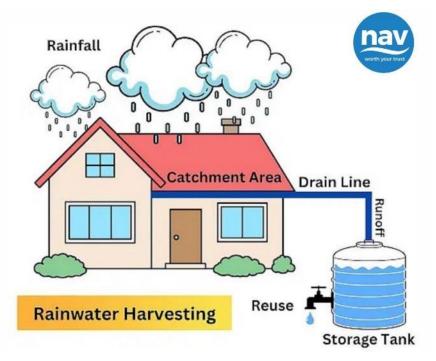
Transpiration by vegetation

Groundwater

Water table


Unsaturated zone

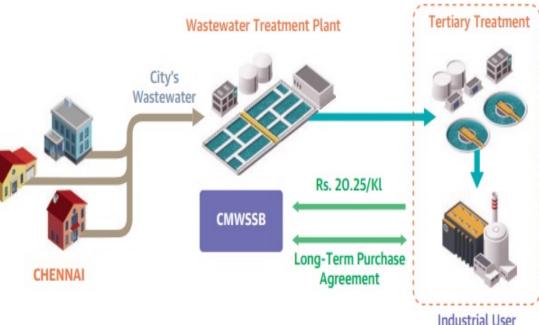
Water table


https://link.springer.com/article/10.1007/s42398-024-00321-z

Water Smart solutions for Circular Economy

Case Studies: Rajasthan, India

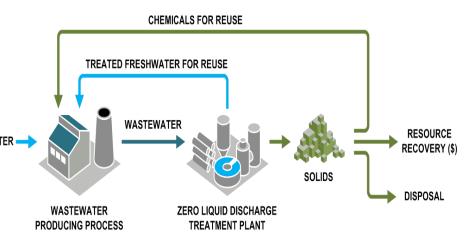
- Rajasthan Government Mandates Rainwater Harvesting For All New Buildings
- All new residential buildings with a footprint of 225 square meters or more, and commercial buildings exceeding 500 square meters, must incorporate rainwater harvesting systems.



Source: www.navwater.com

Case Studies: Chennai, India

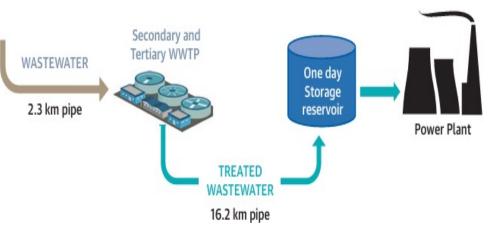
- The Chennai Metropolitan Water Supply and Sewerage Board (CMWSSB) sells treated wastewater to industrial users and generate additional revenues, it can cover all operating and maintenance costs.
- The capital investment in the reuse project has been recovered in less than five years.



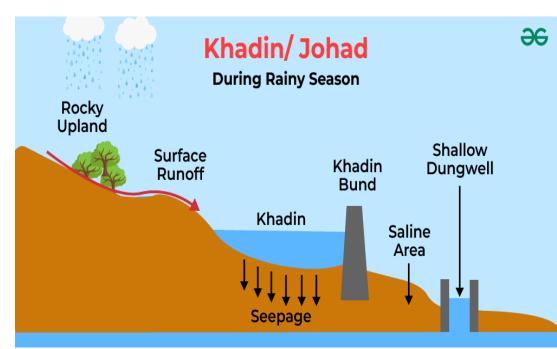
THE WEEK

Source: WICFR

Case Studies: Tirupur Textile Industry, India


- Tirupur, a town in Southern India implemented Zero-liquid discharge (ZLD) policy in 2011
- ZLD is a water treatment process in which all wastewater is purified and recycled.
 FRESHWATER
- > ZLD treatment involves
 - 1. Biological treatment, reverse osmosis, and crystallizers.
 - 2. 99% water is recovered
 - 3. Solid waste and other salts are byproducts.

Case Studies: Nagpur, India


- Nagpur's water reuse project under Build Operate Transfer (BOT), a publicprivate partnership between Nagpur Municipal Corporation and MahaGenCo.
- NMC agreed to provide the raw wastewater, and MahaGenCo agreed to be in charge of the transportation and treatment needed to reuse the wastewater effluent from the NMC sewerage system.

Case Studies: Rajasthan, India

- Tarun Bharat Sangh (TBS), a Rajasthan based Non-Government-Organisation (NGO), has worked towards water conservation by reviving rivers, building rainwater harvesting structures (Johads), protecting water commons.
- Johads are small earthen check dams that capture and conserve rainwater, improving percolation and groundwater recharge.

SWAYAM NPTEL COURSE ON

SUSTAINABLE ENGINEERING CONCEPTS **AND LIFE CYCLE ANALYSIS**

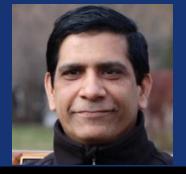
Course Duration 08 Weeks

Course Start Date	January 20,2025
Course End Date	March 14, 2025
Exam Date	March 22, 2025

Enrollment is Open

Enrollment is Free

25



For enrollment please visit the link below https://onlinecourses.nptel.ac.in/noc25_ce58/preview Prof. Brajesh Kumar Dubey **Department of Civil Engineering IIT Kharagpur**

Thank you !

Brajesh K Dubey, PhD, FIE, CEng. Professor-Circular Engineering Chair – School of Water Resources Department of Civil Engineering, IIT-Kharagpur <u>bkdubey@civil.iitkgp.ac.in; bkdubey@gmail.com</u> +91-9434205884

http://scholar.google.ca/citations?user=gLXcah0AAAJ http://www.linkedin.com/pub/brajesh-dubey/0/883/716 https://twitter.com/wasteprof

Prof. Brajesh K Dubey