16th Regional EST Forum in Asia Sustainable Urban Mobility Solution-Empowering Cities Towards Low Carbon Pathways

Manila, 9 December 2024

Investing in Climate Resilient Transport Infrastructure in Asia

(Plenary 3: Quality Infrastructure)

Madan B. Regmi, D. Eng. Transport Division UNESCAP, Bangkok

SDGs Progress: Asia-Pacific

State of Transport in Asia

- Different forms and modes of transport systems
 - Highways, Railways, Maritime and Urban
- Urban modes: Metro, Subways, Urban Rails, Bus Rapid Transit, Bus
- Road Transport: High Share of Emissions-75%
- Railway/Urban Railways: High investment
- Cities: Production and Economic Centres-produce more emissions
- Growth of private vehicles- high share of two wheelers
- Sustainable and Resilience Transport & Mobility Plan
- Good public transport: Seoul, Singapore, Hong Kong, China, Tokyo
- China and India: Electric Mobility, Metro and BRT
- Road Safety: Alarming- 56% of fatalities in Asia (720,000)
- Investment in Mass Transit Projects growth of ridership?
- Innovations: ITS, on-demand service, data, digital payment

Investment in Transport & Contribution to GDP

Capital Investment in transport, Storage & communication (5 yr av)

• A shift in MDBs Investment

- Highways to Railways/Urban
 Transport
- Transport Gross Value Added
 - 9% of GDP in 2022
- EST Transport GVA Share
 - 41% of Global

Wide Funding Gap Utilization of Resource: Procurement and Project Management Bankable Project Development

Source: World Bank (2023)

Mode Share of Public and Active Transport

Public Transport Active Mobility

Active Travel England

Transport Emissions in Asia

36% growth of Transport Emissions in Asia, 2010-2021

Source: SLOCAT, Transport, Climate and Sustainability Global Status Report, 2023

Transport Strategies in NDCs

East and North-East Asia North and Central Asia Pacific South and South-West Asia South-East Asia

Nepal: Unconditional EV share 25% of private by 2025, 200 km of electrified railway by 2030, 90% of private vehicle sales EV 8% emissions reduction in Transport

Thailand: EV production hub, 30by30

18

Carbon Grid Factors, 2022

Carbon Grid Factors 2022 (kgCO2/kWh)

Source: UNFCCC

Source: ESCAP, 2019

Transition to Electric Mobility

Accelerating Transition to Electric Mobility in Public Transport:

- Nepal, Lao PDR, Cambodia, Fiji, Georgia, Thailand,
- Growing interest of countries on EV: CECP- II
 - Mongolia
 - Tajikistan
 - Philippines
 - Sri Lanka
- Targets for Phasing out ICE/registration
- ASESN EV Accelerator Programme (2025)
- Regional Cooperation Mechanism on Low Carbon Transport
- COP29 in Azerbaijan

https://www.unescap.org/projects/asia-pacific-initiative-on-electric-mobility

ASIA-PACIFIC INITIATIVE ON ELECTRIC MOBILITY

- National EV Policy Framework
- Knowledge sharing
- EV Ecosystem
- Collaboration: EV stakeholders

China:

- 82% YOY Growth (21/22)
- NEV Share 58%
- Public Transport: Guangzhou, Shenzhen, Xi'an

ELECTRIC MOBILITY IN PUBLIC TRANSPORT A Guidebook for

BESCAR

Impact of Climate Change on Transport

Climate event	Potential impacts	Vulnerable infrastructure and adaptation measures
Temperature	Extended warm weather can cause pavement deterioration	Pavement: use of stiff bitumen to withstand heat in summer, soft and workable
	due to liquidation of bitumen, heating and thermal expansion	bitumen with solvent in winter, control of soil moisture and maintenance planning
	of bridges and buckling of joints of steel structure	
	Low temperature can affect road transport operations;	Steel bridges: selection of material, provision of expansion joints, corrosion
	operation and maintenance costs are likely to increase for	protection
	additional snow and ice removal as well as additional costs of	
	salts to be used for snow melting	
	Rail track deformation and buckling	
Rainfall	Increased intensity of summer and winter precipitation would	Bridges and culverts: flood estimation,
	create floods of roads, railways and tunnels, affect drainage,	return period, design discharge, high flood level, clearance above high flood level,
	road pavement, railways tracks, driving condition and visibility,	length of waterway, design load, wind load, foundation, river and bank protection,
	affect bridges and culverts waterways and clearance, damage	corrosion protection
	bridges and culverts foundation due to scouring	
		Drains: discharge estimation, size and shape
	Rainfall can trigger landslides and of drain, drain slope	Mountainous road: slope protection work, subsurface drains, catch drains
	mudslides in mountainous roads and can create roadblocks	Pavement: increase road surface camber for quick removal of surface water,
		frequency of maintenance, design of base and subbase, and material selection
Storms and storm surges	Rainfall and winds associated with storm/ cyclone can create	Drains and cross drains: capacity enhancement, slope
	flooding, inundation of embankments, and affect road	Road embankment: increase height
	transport.	Road signs: wind load, structural design, foundation, corrosion protection
	Disrupt traffic safety and emergency evacuation operations,	
	affect traffic boards and information signs	
Sea level rise	Rise in sea level will affect coastal roads, may be needed to	Coastal road: protection wall, additional warning signs, realignment of road
	realign or abandon roads in affected areas	sections to higher areas, edge strengthening
	Damage to port infrastructure, disruption to shipping traffic,	
	increase dredging requirements	

Sustainability & Resilience Plan

- Reactive Approaches to Climate Events
- Assessment of Risks and Vulnerabilities
- Sustainable and Resilient Transport & Mobility Plan
- Update Guidelines and Design Standards
- Life Cycle Assessment Engineering Resilience
- Nature Based Solutions
- Community Engagement
- Governance
- Strengthen Role of Transport Sector in UNFCCC Process
- Implementation of Adaptation Plan and Strategies
- Translate Knowledge/Guidelines to Actions/Implementation

NDC, Transport & Energy Systems (Mongolia)

Existing Public Transport in Ulaanbaatar

- Trolley bus, bus, minibus
- Several studies: MRT, LRT, BRT
- Extreme traffic congestion
- Coordination: City and Ministry NDCs:
- 22.7% (unconditional),
- 27.2 % (conditional) GHG reduction by 2030
- 44.9% total by 2030

Transport:

- Switch to Euro-5 standard fuel
- Mode shift to rail for freight
- Electric mobility and electric heating

ESCAP Support to EV & Public Transport

- National Workshop on EV, 28 Nov 2024
- Public Transport Strategy, 29 Nov 2024

0.07% of global emission, 164% growth (2000)

Energy: 2022 Energy supply, 69.8% Coal, 27.6% oil, 0.1% Hydro (Share of renewable 3%)

Coal powered stations, Solar and Wind Planned

NDC measures:

Use of renewable energy sources: Hydro, Solar and Wind Power, - Nuclear? (Uranium mine)

Improve efficiency, reduce transmission grid losses • Reduce the internal use of combined heat and power plants (CHPP)

Improve the efficiency of power plants, heat supply

Source: IRENA

Green Innovations

- Suroboyo Public Bus- Surabaya
- Purabaya Bus Terminal
- E-Jeepney- Manila (scaling-up)
- Electrification and Two and Three Whelers
- Active Mobility- England
- Electric Mobility China, Nepal, India
- Public Transport- Metro, Bus, BRT

Policy Options: Climate Resilient Transport Infrastructure

- Evidence Base Policies based on the Structure of Transport
 - Transition Towards Net Zero,
 - Prioritize Adaptation
 - Governance of Climate Change
- Life Cycle Assessment
- Integrated Urban and Transport, Multimodal Transport and Logistics Planning
- Invest in Resilient Infrastructure: Railways and Urban Rails
- Transition to Low-Carbon Transport: EV,
- Use of Renewable Energy in Transport: Solar, Hydro, Wind, Hydrogen
- Innovation & Technology Dependent Transition
- Access to Climate and Green Funds
- Coordination and Partnerships: Public & Private, Sectoral-Urban & Energy
- New Development Cooperation Paradigm? Review Appraisal Methods

Thank You

regmi.unescap@un.org

https://www.unescap.org/kp/2024/review-developments-transport-asia-and-pacific-2024-transition-towards-sustainable

https://www.unescap.org/our-work/transport/suti

https://www.unescap.org/projects/asia-pacific-initiative-on-electric-mobility/national-policy-frameworks

https://www.unescap.org/kp/2022/tracking-sustainable-mobility-asia-pacific-cities-2022