Special Event – ISWA 2011 World Congress Moving Towards Zero Waste for a Green Economy – The Role of Local Authorities Daegu, Korea – 17 – 18 October 2011

Options to Approach Zero Waste: Management of Organic Residues

L.F. Diaz and G. M. Savage CalRecovery, Inc. Concord, California USA Iudiaz@calrecovery.com

Introduction

- Brief status
- General Alternatives
- Options for Management Organic Matter
- Conclusions
- Recommendations

Major issues currently facing us

- Global population rapidly growing and is expected to reach more than 9 billion by 2050;
- Emerging markets are becoming more affluent and demand a "higher, resourceintensive quality" of life

Major issues currently facing us

- Migration of people from rural to urban areas;
- Lack of sufficient food in some regions;
- Significant climatic events impacting agricultural productivity and the environment
- Improper final disposal of solid wastes

Situation in many economically developing countries

CallRedovery

Need to Consider Global Impacts

CallRedovery

Generation and Characteristics of MSW

Type of Country	Avg. Generation (kg/cap- day)	Paper & Plastics (%)	Concentration of Organic Matter (%)	Moisture Content (%)
Industrialized	1.5	30 to 50	20 to 40	20 to 30
Developing				
- Middle Income	0.90	20 to 30	40 to 50	50 to 60
- Low Income	0.62	10 to 20	50 to 60	60 to 80

Key Characteristics of MSW in Industrialized Countries

- High concentration of paper and plastics
- Low volumetric density
- Low moisture content

Key Characteristics of MSW in Economically Developing Countries

High concentration of organic matter
Relatively high volumetric density
High moisture content

Primary Management Options for Biomass

- Thermal treatment
- Land application
- Biological treatment
 - Composting
 - Anaerobic digestion

Comparison of the Thermal Characteristics of MSW with Those Required for Auto-Combustion

Typical values in industrialized countries

Typical values in developing countries

Leachate formation in Landfills

Water from above

Moisture in cover material

Moisture in waste

Liquid out – Leachate

Schematic Diagram of a Sanitary Landfill

Potential Options to Increase Organics Diversion

 System options relevant to this presentation include:

- composting
- anaerobic digestion and composting

The Place of Composting in a Community System

Community as a whole:

– community support systems

waste management

compositing of organic materials and compost production

Full Scale Composting

Objective: Reliable, cost-efficient production of quality compost and replish organic matter in the soil

- Pre-processing/feedstock preparation
- Composting
- Refinement of finished product (postprocessing)
- Compost application

Potential Options to Increase Organics Diversion (cont.)

• Sources of organics/increased diversion:

- residential (e.g., food waste and yard waste, 5% to 35% of sector)
- commercial/institutional (e.g., restaurant and market wastes, landscaping waste, 5% to 20% of sector)
- industrial/C&D (e.g., wood waste)

Main Driver in Europe – EC Landfill Directive

- Stringent requirements for construction and management of landfills (e.g. liners)
- Requirement for pre-treatment of organic waste before landfilling
- Obligation: Reduce emissions from landfills by diverting biodegradable components in municipal waste that goes to landfills by

 25% by 2006
 65% by 2016
 (based on 1995 disposal figures)

Composting in Europe (2005)

⇒ Degradation of <u>source-separated</u> waste from households, gardens and industries

Approximately 2,000 facilities - 40% treat only garden waste

- Annual capacity -> 18 million tons (11 M biowaste, 7 M greenwaste)
- About 800 small on-farm co-composting plants
- **Target:** production of a MATERIAL for market as organic fertilizers and soil amendments

Main Drivers in USA

- Some states require fixed percentages of waste diversion from landfills
- Other states have set goals
- Bans on disposal of green waste in landfills at some locations

Number of Yard Waste Composting Facilities in the USA (1988-2006)

GaéRedovery

General Trends in Composting Role of organics:

- importance of organics in reaching diversion goals
- pretreatment of organic matter to reduce demands on land disposal and emissions from disposal sites
- number and types of composting facilities
- quantities of organic materials being processed

Evolution of Modern Composting

1950s

l970s Calificationalist

Windrow Composting

Method of providing oxygen and moisture to biomass:

- static
- forced aeration:
 synthetic covers
 plastic bags
- mechanically turned
- mechanically turned with forced aeration

Self-Propelled Turning Machines

CalRecovery

Turning Machines for Small Windrows

Open Windrows

- Turned windrow, ASP, and enclosed facilities
- Air/odor emissions and control
- Strong mechanical/ civil/geotechnical/ hydrogeological experience

SaleKadovaky

Forced Air Windrows with Synthetic Covers

CaleRedovery

Schematic Diagram of Gas Flows in a Windrow Covered with Syntethic Material

CallRedovery

Close-up of Rotating Cylindrical Reactor

GaleRedovery

Basin Type Plant Under Construction, Depicting Forced Aeration Pipes

Anaerobic Digestion Facilities for the Recovery of Energy

from Organic Matter

Lab-Scale Organic Fraction of MSW/Sludge Digesters in Richmond, California (1970s)

Selence do Very

Pilot Food Waste Digester in Richmond, California (1980s)

CaleRedovery

Modern Technologies

Essentially divided as a function of total solids content in the reactor:

 Dry digestion: TS > 15%
 Wet digestion: TS < 12%

Example of an installation for the treatment of organic matter

Wet Digestion

The electrical energy produced is used within the facility

CallRedovery

Dry Anaerobic Digestion

GaliRedovery

Dry Anaerobic Digestion

CallRedovery

Dry Anaerobic Digestion

Galeradovery

Current performance of facilities **Biogas Green Energy Biowaste** DIGESTER I m3 of Biogas at 60% CH₄ 6 kWh **Soil Conditioner** 600 kg CO₂ emissions savings

CallRedovery

Installed Capacity of AD in the EU (tons per year)

Saeredover /

Relevant Financial Incentives

- Award "Green Certificates" (CG):
 - European Directive 2001/77/CE
 - promotes production of energy from renewable sources
 - provides financial incentive to producer (time period and amount vary from country to country)
 - one GC = 50 MWh of energy
 - in Italy, financial incentive is 0.115 €/kWhe per year (~.138 US\$/kWhe year)
 - in Italy, incentive is valid for 8 years from startup of plant can be extended 4 more years (financial incentive reduced to 60%)
 - in Germany, incentives last over 20 years

Financial Incentives in Germany					
	Output (kW)	Incentive (€ /kWhe)			
	< 150	0.115			
	150 to 500	0.099			
	500 to 5,000	0.089			
	5,000 to 20,000	0.084			

Additional revenue may be obtained through co-digestion (from 0.04€ to 0.06 €/kWhe) Revenue from sale of electricity ~ 0.175 €/kWhe Additional bonuses for co-generation and for use of innovative technologies Potential Solutions: Energy-Agro-Waste Systems for Maximum Efficiency

Introduction

- Communities are not planned from the outset for optimal utilization of materials and energy
- Community systems are composed of a number of individual subsystems, e.g.:
 - food production
 - wastewater treatment
 - electricity supply
 - Solid waste processing

Community Support Subsystems

Community Support Subsystems

- Design of any one subsystem does not take into account impact on all of the other subsystems
- Planned development of community systems needs to account for mass and energy balances among subsystems -- result:
 - high overall system efficiency
 - reduced net waste production
 - conservation of energy
 - overall optimum use of resources

Models of Unit Processes

- Requirements for modeling unit processes:
 - identification of fundamental variables
 - governing relations among variables (inputs and outputs)
 - reliable scientific data
 - foresight to identify common inputs and outputs among different types of unit processes

Models of Unit Processes (cont.)

Residue

Residue 2

Mass and Energy Balance Diagram for Beef Production

Concluding Remarks

Status of our Industry

Many improvements have taken place in waste management practices during the last 70 years

CallRecovery

Status of our Industry (cont.)

 However, society still consumes large quantities of items each day

 As an example, in the EU each person produced:

- 460 kg of solid waste per year in 1995
- 520 kg of solid waste per year in 2004
- 680 kg of solid waste per year (projected in 2020)

Conclusions/Recommendations

- Limited or conflicting information to make important management decisions
 - Need reliable, scientifically based information
- Veracity in reporting results of programs
- Strategies used by most industrialized countries:
 - Waste minimization
 - Recycling (including bio treatment)
 - Waste diversion from landfill

Conclusions/Recommendations

Strategies used by most economically developing countries:

Informal recycling
Final disposal in the land

Following are some specific suggestions for economically developing countries

Keys to Success

- Political will to solve the problem of waste management
- Development of 3R and "zero waste" strategies:
 - appropriate technology (site selection, facility design)
 - available resources (financial and human) for sustainable operations

availability of uses/markets (product quality)

Establishment of sound final disposal sites

Keys to Success

- Review and modernize pertinent laws
- Develop policies related to resource management and resource recovery
- Ensure continuity of staff in Environmental Management
- Following are three additional requirements for success:

Keys to Success

- Education
- Education
- Education

"Life Style" California, USA example food (source: Menzel, So isst der Mensch, 2005)

Food for one week

CaleRedovery

"Lifestyle" Germany example food (source: Menzel, So isst der Mensch, 2005)

Food for one week

"Lifestyle" Rural Area - Ecuador example food (source: Menzel, So isst der Mensch, 2005)

