Transport, Black Carbon & Climate Change

Maheswar Rupakheti

AIT-UNEP Regional Resource Center for Asia and the Pacific

5th Regional Environmentally Sustainable Transport Forum Bangkok, 23-25 August 2010

Black carbon (Soot)

Fossil fuel

Source: Incomplete combustion of fuel Size: ~ few nanometers to10 micrometer Atmospheric life-time: few weeks

Relative importance of BC Sources: Global

Relative Importance of BC Sources: Regions

Transport : 3rd largest energy-related source of BC in Asia

Bond et al, JGR, 2004

Black Carbon & Climate Change

Radiative effect (Net Warming)

Cloud properties Snow-albedo

- Global warming potential of BC (20 yrs) : ~ 2000-3000 times that of CO_{2.}
- In addition, BC deposition on snow is attributed to accelerated melting of snow/ice in Arctic and glacier melting in the Himalayas.

Menon et al., ACPD, 2010, Flanner et al. ACP, 2009

Black Carbon & Climate Change

- BC Forcing: +0.9 Wm⁻² (+0.4 -+1.2 Wm⁻²), ~ 55 % of CO₂ forcing (1.66 Wm⁻²).
 BC is 2nd or 3rd strongest contributor to global warming after CO₂.
- Powerful regional climate forcing (atmospheric heating + BC deposition on snow/ice) due to inhomogeneous distribution of sources.

Black carbon & Climate Change

Atmospheric heating (W/m²)

 Powerful regional climate forcing (atmospheric heating + BC deposition on snow/ice) due to inhomogeneous distribution of sources.

Menon et al., ACPD, 2010, Flanner et al. ACP, 2009, Ramanathan & Carmichael Nature Geoscience 2008.

Mitigation of BC from Transport Sector

Projected on-road BC emissions

Potential importance of "superemitters"

Superemitters: ~ 15% vehicles in Asia

Mitigation of BC from Transport

• Technical:

Technologies exist to reduce most emissions of BC without limiting the underlying activities.

- Fuels Switch (LPG, CNG, electricity) etc.
- Low sulfur fuel (required for PDF).
- Diesel Particle filter (DPF) for both New and Old vehicles
- Engine Modification,
- Stringent emission standards (new engine standards, replacement of old vehicles) and inspection/maintenance programs
- Economical:

Typically amenable to lower cost end-of-pipe control or equipment fixes which are readily deployable.

Project Atmospheric Brown Cloud (ABC)

www.rrcap.unep.org/abc

AIT-UNEP Regional Resource For Asia and the Pacific: **Regional Center of Excellence in Atmospheric Resources**

SUMMARY

• BC reduction from transport sector will result in immediate climate benefit in a short-period. But it will require matching Sulfur emission reduction, alongside a long term CO2 reduction.

 Controlling particulate matter pollution (including BC) from diesel vehicles in developing Asia also results in very large health benefits

Grieshop et al, 2009

 Control of transport-based BC emissions should be an essential part in any comprehensive BC control strategy as well as Environmentally Sustainable Transport Strategies in Asia.