Project Preparation – building the resilient city through sustainable transport

by David Bray and Philip Sayeg (October 11-12, 2017, AIT, Bangkok) with Nikola Medimorec (SLoCaT) & Chanin Manopiniwes (World Bank)

- Show how transport contributes to global agendas & implications
- Describe key aspects of transport project development – also relevant to other sectors
- Provide an understanding of the role of different actors
- Understanding risk assessment and role of public and private sectors

Day/ time	Торіс					
Wednesday 11 October						
12.30-12.45	Introduction					
12.45-13.00	Transport and the global agendas					
13.00-13.45	How are projects prepared? - Overview					
13.45-14.15	Why is concept important?					
14.15-15.00	Innovative approaches					
15.00-15.30	Break					
15.30-16.30	Closer look at project preparation					
16.30-17.00	Exercise: putting your team together					
Thursday 12 October						
09.00-10.30	Demand and economic appraisal					
10.30-11.00	Break					
11.00-12.00	Identifying risks and potential role of private sector					
12.00-12.30	Wrap-up					

Transport and the Global Agendas

Nikola Medimorec Senior Researcher

Partnership on Sustainable, Low Carbon Transport (SLoCaT) **Regional EST Policy Dialogue and Training Workshop for South** Asia and South-East Asia October 11, 2017

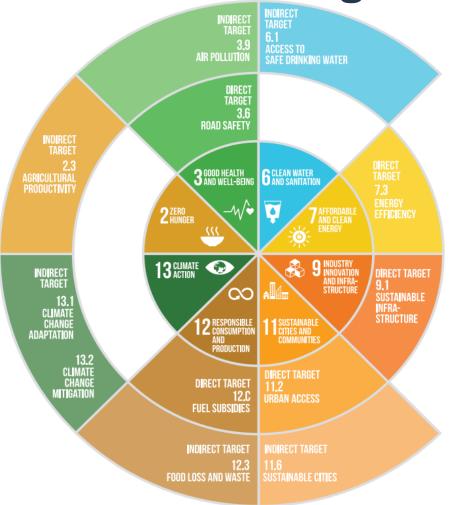
SLoCaT Partnership

90+ Members: International Organizations – Governments – Development Banks – NGOs – Private Sector – Academe

Mission: Integrate Sustainable Transport in Global Policies on Sustainable Development and Climate Change and Leverage Action in Support of the Implementation of the Global Policies.

Global Agendas Relevant for Transport

Global Processes on Sustainable Development and Climate Change present Transport Sector with Opportunities and Responsibilities

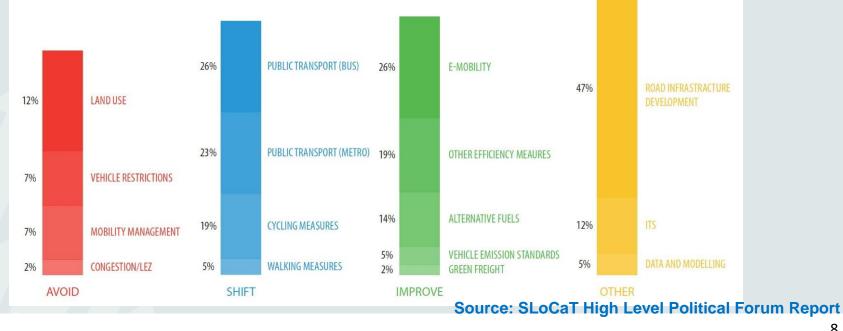


Global Agendas Have Strong Co-Benefits

Themes	Poverty Alleviation & Food Security	Social Inclusion & Equity	Urban/ Rural Access/ Regional Connectivity	Climate Change Mitigation	Climate Change Adaptation	Road Safety
2030 Agenda						
Paris Agreement						
New Urban Agenda						
Addis Ababa Action Agenda						
Global Decade of Action on Road Safety						
Sendai Framework 2015-2030						
Nairobi Mandate						

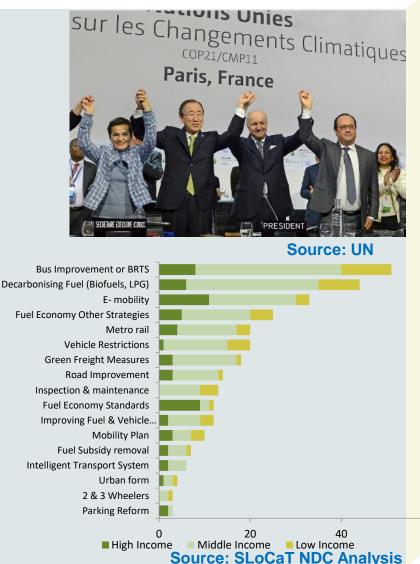
Level of Contribution				
High				
Medium				
Low				
None				

Transport Connected to Several SDG Targets

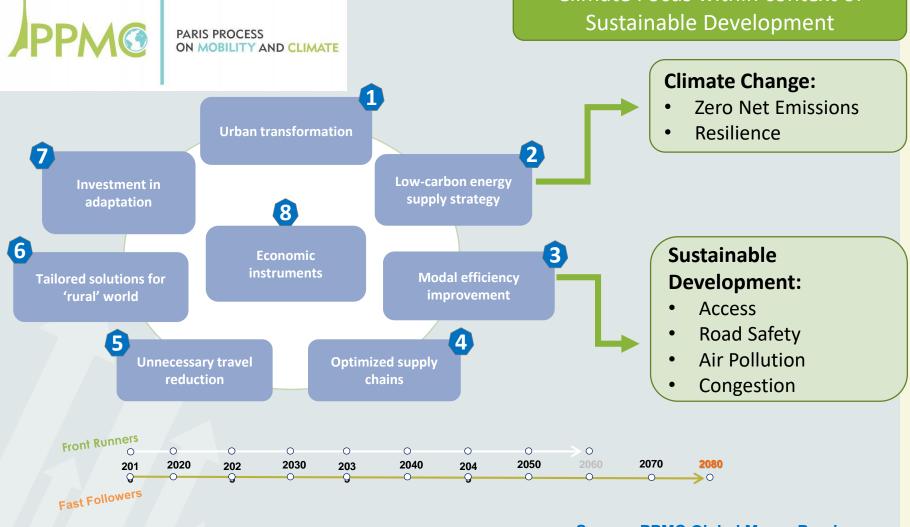


Source: SLoCaT Sustainable Development Goals & Transport

- Transport contributing to 8 SDGs and several targets
- SDG target 13.1 calls for Climate Change Adaptation and SDG target 9.1 on resilient transport infrastructure
- 22 countries in 2016 and 43 countries in 2017 have submitted Voluntary National Reviews (VNRs) to the High-level Political Forum (HLPF)


Transport in the SDG Review Process

- In 2017, 98% of the 43 submitted VNRs have some degree of reference to the transport sector
- 35% of VNRs in 2017 give specific examples to link transport with lacksquaresustainable development impacts
- Adaptation in transport sector only included by Kenya in 2017 VNRs
- Overview of included transport measures (divided into Avoid, Shift, Improve and Others):


Transport Plays Strong Role in Paris Agreement

- The Paris Agreement was adopted by all 196 Parties to the UNFCCC at COP21 on 12 December 2015
- Agreed targets:
 - limiting global temperature rise to well below 2 degrees Celsius,
 - and to strive for 1.5 degrees Celsius.
- Countries submitted mitigation and adaptation measures through Nationally Determined Contributions (NDCs)
- 75% of NDCs highlight transport as mitigation source
- 5% of NDCs have adaptation measures for transport

60

Paris Process on Mobility and Climate (PPMC)

Source: PPMC Global Macro-Roadmap

Declaration on Adaptation

- COP22 Declaration on Accelerated Action on Adaptation in Transport
- Within a week signed by 395 individuals and by 55 organizations including:
 - World Bank
 - International Energy Agency
 - Global Environment Facility
 - Islamic Development Bank
 - International Road Federation
 - PIANC
 - International Union of Railways
 - UN-ECE
 - Nordic Development Fund
 - International Association of Public Transport

Read more about it here: http://www.slocat.net/news/1780

Mitigation and Adaptation Action to be Leveraged in Cities

- Cities at forefront of climate action
- Mitigation and adaptation have to be tackled together
- SLoCaT continuing focus on urban transport, participating in World Urban Forum in 2018
- contributing to Global Centre of Excellence on Climate Adaptation

FORUM BANDAR SEDUNIA

KUALA LUMPUR • 7-13 FEB 2018

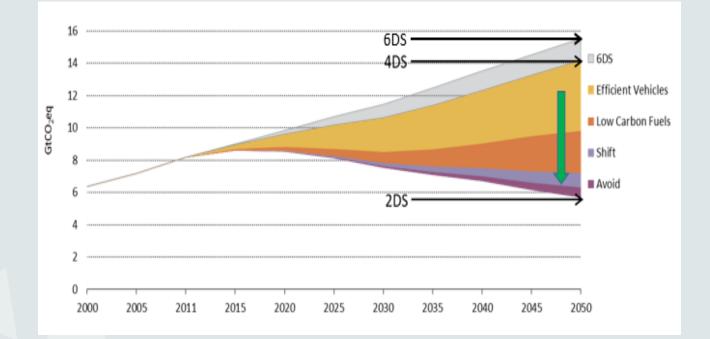
Global Centre of Excellence on Climate Adaptation

Thank you for your attention!

For more information, visit our website: http://slocat.net/ http://www.ppmc-transport.org/

Like us on Facebook: facebook.com/SLoCaTOfficial/

Follow us on Twitter: @SLOCATCornie



SLoCaT Partnership

Transport needs to do its share for Paris Climate Agreement

Source: IEA 2012, Energy Technology Perspectives 2012. OECD

Large investment need & enough finance but...

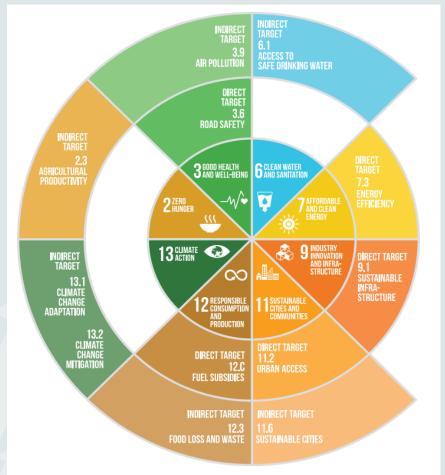
Infrastructure

Many projects are needed; but There is not enough finance

Finance Sector

There is money looking for opportunities; but

There are not enough projects


Why this dichotomy?

- The wrong projects
- The wrong design
- The wrong structure

That is, the wrong project preparation

Transport recognized in the SDGs

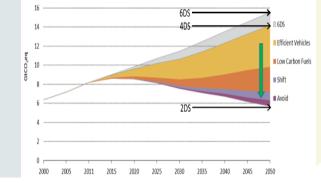
Many SDG targets rely on transport

Positives

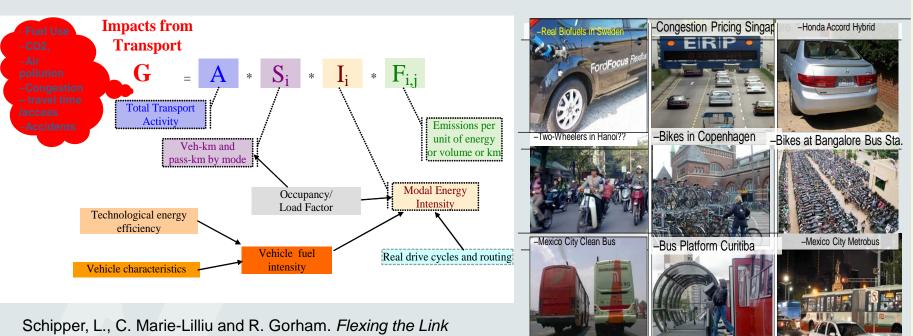
- Access
- **Connectivity**
- Efficiency
 Negatives
- Air pollution
- Fatalities/ injuries
- Greenhouse gas emissions
 Mitigation/ adaptation

Source: Partnership on Sustainable, Low Carbon Transport

Successfully address transport, climate benefits follows


Table 4

Present value of wider economic benefits of four BRT schemes (in 2012 million US\$)


Component of benefits	TransMilenio, Bogota (Phase 1 & 2)	Metrobús, Mexico City (Line 3)	Rea Vaya, Johannesburg (Phase 1A)	Metrobüs, Istanbul (Phases 1-4)
Travel time savings	1,830	142	331	6,369
Operating cost savings	1,393	38	170	2,154
Improved road safety	288	23	268	881
Health benefits of Increased physical activities	99	7	141	392
Benefits from Carbon emissions reduction	239	10	18	152

Source: Carrigan et al. 2013

Carrigan, A., King, R., Velasquez, J. M., Raifman, M., Duduta, N. (2013). *Social, environmental and economic impacts of BRT systems*, EMBARQ - WRI.

Conceptual framework: Activity, Share, Intensity, Fuels

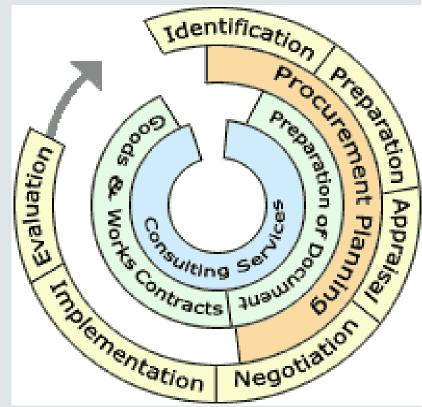
Schipper, L., C. Marie-Lilliu and R. Gorham. *Flexing the Link* between Urban Transport and CO2 Emissions: A Path for the World Bank. International Energy Agency, 2000.

Need for a strategic framework

A goal e.g. for Cebu: *"The Project Development Objective (PDO) is to improve the over-all performance of the urban passenger transport system in the Project Corridor in Cebu City in terms of the quality and level of service, safety, and environmental efficiency."*

Higher Level Objectives to which the Project Contributes: "The project's link to the CPS is through support under Engagement Area 3 of Rapid, Inclusive and Sustained Economic Growth where the project will contribute to the Government's target of increasing the ratio of public investment to GDP, and provide one urban corridor with improved public transit services."

Key results indicators:


- Increase in the number of people using improved public transport services
- Increase in the number of women using improved public transport services
- Reduction in average travel times for BRT users during PM peak from Ayala to Bulacao
- Reduction in the greenhouse gas (GHG) emissions of transport in Cebu City
- Reduction in number of road accidents in Cebu City.

For definitions of PDO etc: <u>http://siteresources.worldbank.org/INTISPMA/Resources/383704-1184250322738/3986044-1250881992889/04</u> WorldBank Results Terminology.pdf

Overview of the project cycle

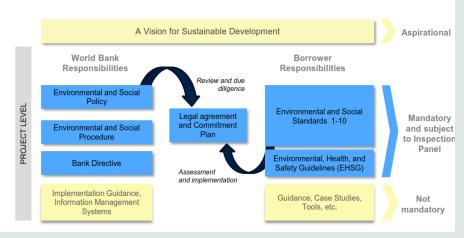
The Project Cycle is the framework used by development agencies with clients to design, prepare, implement and supervise projects

- Identification
- Preparation (also known as business case)
- Appraisal
- Negotiation/Approval
- Implementation
- Evaluation

Stage	Scope	Responsibility	Duration		
Identification	Based on sector work and country strategies, the MDB etc. and borrowing countries jointly identify projects that support development goals – identification leads to the Concept	Joint	1 year +		
Preparation	"bankability" - studies and impact assessments that refine the objectives, components, schedule, institutional responsibility and implementation plan of the project.	Government	1 year +		
Appraisal	review all the studies conducted in previous stages, including the types and amounts of equipment, goods, civil works and services that will be purchased. Results in what WB call the PAD	MDB	6 months		
Negotiations	MDB and borrowing country will agree on the terms of the loan supporting the project	Joint	2 months		
Implementation	Purchase agreed infrastructure, goods and services	Government	1-10 years		
Evaluation MDB loan	Self evaluation & potentially independent evaluation of achievement of outcomes stops at end of implementation	MDB & desirably government also	6 months		
What does this mean for operations and monitoring?					

What if government has a proposal already?

- Governments or private proponents may have done their own feasibility studies/ project preparation and seek MDB support


 as in the HCMC urban rail example
- MDB may then conduct due diligence:
 - Do technical audits engineering, demand, economic & finance
 - Do safeguards assessment (social, environmental risk management)
 - Common approach for MDB involvement in non sovereign lending operations

World Bank E&S Framework (Sep 16)

10 Standards

- Assessment and Management of Environmental and Social Risks and Impacts
- Labor and Working Conditions
- Resource Efficiency and Pollution Prevention and Management
- Community Health and Safety
- Land Acquisition, Restrictions on Land Use and Involuntary Resettlement
- Biodiversity Conservation and Sustainable Management of Living Natural Resources
- Indigenous Peoples/Sub-Saharan African Historically Underserved Traditional Local Communities
- Cultural heritage
- Financial Intermediaries
- Stakeholder Engagement and Information Disclosure

Source: [https://consultations.worldbank.org/consultation/review-and-update-world-bank-safeguard-policies] accessed October 19, 2016

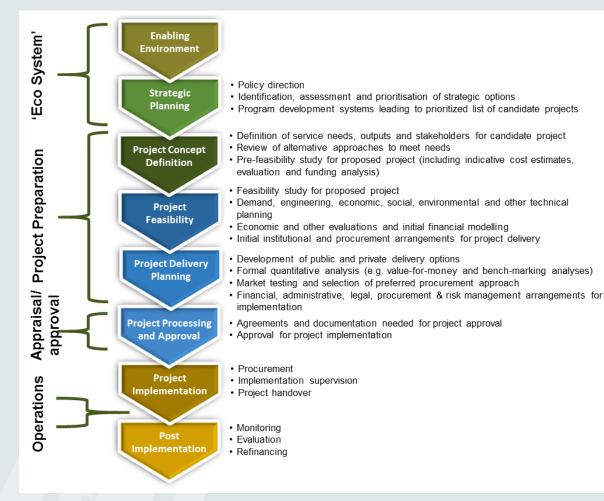
The Cebu BRT – more later

Indicative Project Cost (US\$ million)

	TOTAL COST	IBRD	CTF	GoP
1. BRT Infrastructure and System	162.0	80.2	8.8	73.0
2. Traffic Management	15.6	-	13.2	2.4
3. BRT Concept Dissemination and Development	7.0	4.0	-	3.0
4. Urban Realm Enhancements	3.0	3.0	-	-
5. Project Outcome Monitoring	5.0	3.9	1.1	-
6. Project Management	6.1	6.1	-	-
Base Cost Total	198.7	97.2	23.1	7 8. 4
Price contingency Physical contingency	11.1 18.7	7.2 11.6	0.8 1.1	3.1 6.0
TOTAL	228.5	116.0	25.0	87.5

2014 cost estimate based on FS level - conceptual only

• Refer PID (concept)


http://documents.worldbank.org/curated/en/919 581468063530689/Project-Information-Document-Appraisal-Stage-Cebu-Bus-Rapid-Transit-BRT-Project-P119343

• PAD (appraisal document)

http://documents.worldbank.org/curated/ en/849741468094766681/Philippines-Cebu-Bus-Rapid-Transit-Project

 Key point is this is a sovereign loan project (\$116m) although there is a CTF concessional loan (\$25m) + GoP is a significant financier

Project preparation in context

- Preparation/ feasibility – engineering, demand, economic, financial, environmental and social (+ve and –ve not just compliance)
- Costs include
 everything in Results
 Framework
- PPP / Govt. financing are just methods of delivery
- Cover demand and economics later

Source: Adam Smith International (2014), Assessment of the Effectiveness of Project Preparation Facilities in Asia. Report prepared for the G20 Working Group. September + Author's additions

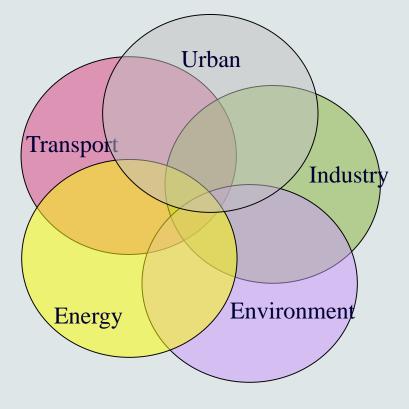
Results measurement

Issue: what happens after implementation? Refer Cebu BRT results framework (Appendix 1 of PAD)

Narrative Summary	Objectively verifiable indicators	Means of verification	Important assumptions
Goal: Higher order objective to which the project contributes	Indicators of Goal achievement	How data on Goal will be collected and measured	Assumptions for achieving Goal targets
Purpose: Primary reasons for the project	Conditions that will indicate Purpose has been achieved	How data on Purpose will be collected and measured	Assumptions for achieving Purpose
Outputs: Direct measurable results of the project	Magnitude of Outputs	How data on Outputs will be collected and	Assumptions for achieving Outputs
Inputs: The resources made available to the project	Implementation targete (type and quantity)	How implementation targete will be monitored	Assumptions for providing Inputs

What happens in UK, EU & Australia?

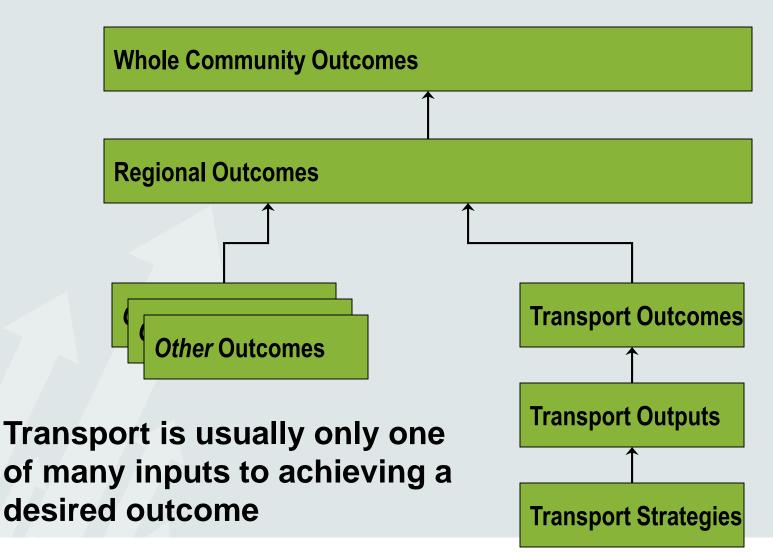
Co	ontent	Comment					
1. Description of the Proposal							
	Description	A description of the physical characteristics of the proposal, including linkages with other related projects.					
	Cost	Capital and operating cost over the life of the project, or some equivalent. Indication of confidence level.					
	Implementation schedule	Delivery time from time of approval. Indication of confidence level.					
2.	Proposal Context						
	Strategic context	The transport strategic context, as indicated in a Transport Plan and other similar documents.					
	Objectives	Articulate the principal objectives for the proposal. Good practice is to establish principal and secondary objectives to give a better understanding of priorities.					
	Relationship to Government policy	Link with broader government policy (ie beyond transport).					
	Links to other projects	Describe links with other related projects and actions.					
	Alternatives considered	Describe the alternatives that were considered and the basis for the choice of Base Case.					
	Demand analysis	Describe estimated demand for the project for at least several future years, with and without other related projects (eg other MRT lines), the period for patronage ramp-up, and the probability of alternative demand forecasts. Describe the effect of key underlying assumptions on demand, eg state of the economy, fares, etc.					
	Consultation	Extent of consultation on the proposal within Government and with business and the community stakeholders.					
3. Proposal Justification							
	Summary of Proposal Appraisal	Report the results of financial analysis, economic analysis, environmental appraisa and social impacts as required for the proposal.					
	Risk analysis	Establish areas of risk, (eg individual risks within broad categories such as project design, project implementation, maintenance and operations, revenue, concessioning, etc), the extent of the uncertainty, the party best able to manage the risk, measures to manage risk, and the potential to minimize risk.					
	Required impact statements	eg Environmental Impact Statement etc					
4.	Project Financing						
	Sources of finance	Review of financing options, including PPP and other sources of finance, and recommendation.					
	Budget impacts	Cost of the project as reflected in Government budget.					
5. Project Implementation							
	Contracting/concessioning arrangements	Review proposed contracting/concessioning arrangements and makes a recommendation. Ensure that data used in proposal appraisal and financing in previous sections are consistent with proposal contractual arrangement.					
	Implementation arrangements	Review issues related to project implementation, including project design, implementation programming, impact on the community, ensuring linkages with other project and programs, and other matters needed to ensure that project objectives are achieved.					
	Risk management	Describe measures to be taken by the government to manage uncertainty.					


e.g. UK Treasury (2015): Public Sector Business Cases Using The Five Case Model Green Book Supplementary Guidance On Delivering Public Value From Spending Proposals.

The context: be mindful of what you cannot control

- We don't live in a command & control economy
- Projects sit within a broader context
- A robust strategy will guide, influence and provide the right framework for other "actors" to do their part e.g. private sector & individuals
- Flexibility is of course required

Transport interacts with other sectors



Transport is a derived demand

Transport is a means to get to your office, school etc

Transport contributing to community outcomes

Desirable eco-system

Instrument	Content	Time Frame	
Policy	Directional intent e.g. reduce road fatalities, achieve certain urban air quality levels, limit GHG emission from transport, create universal ru- ral, urban and national level access	Long term	
Strategy and Plan	Strategy/ long term plans integra- ted with land use (10 to 50 years) - directional in nature, sub-sectori- al/ spatial priorities, broad sequen- cing of land use, transport	10 - 50 years	
	Medium term plans – detailed pro- ject identification, priority setting		
Program	Investment programs (on rolling basis), consisting of projects and other initiatives including TA and capacity building.	1-2 year committed projects, 3-5 year indicative investments awaiting funding approval	
Project	'Ready to implement' projects iden- tified in programs	Once implemented projects have a long life	

One Plan – desirable for integrated interventions

Cebu BRT is one project of what should be a bigger comprehensive approach

Funding & Responsibility	Policy	Road	Public Transport	Other
Agency 1	А	А	А	А
Agency 2	В	В	В	В
Agency 3	С		C	С
Agency 4	D		D	D
Agency 5	Е			
Funding X				
LG funding Y				
	\$20M	\$1,100M	\$670M	\$80M

- Corruption
- Bureaucratic inertia
- Weak local government
- High demand on scarce resources (\$ & capable people)
- How to harness market forces?
- Any more?

Examples of market response

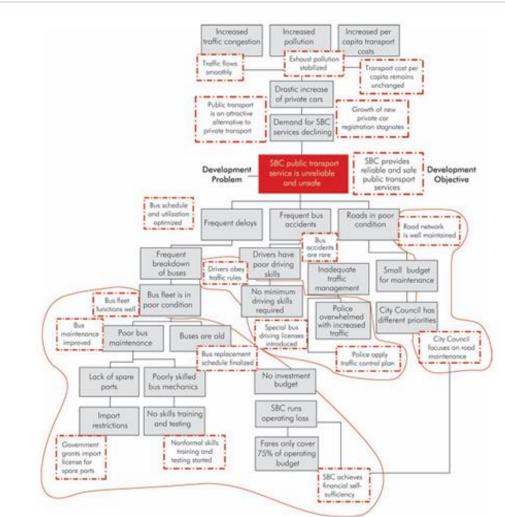
MC taxis, Bangkok

FX Manila

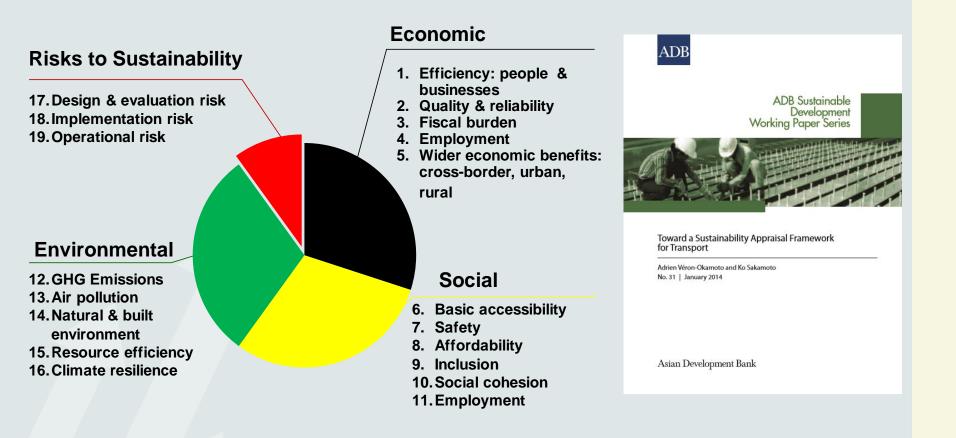
Thai - Cambodia border goods crossing

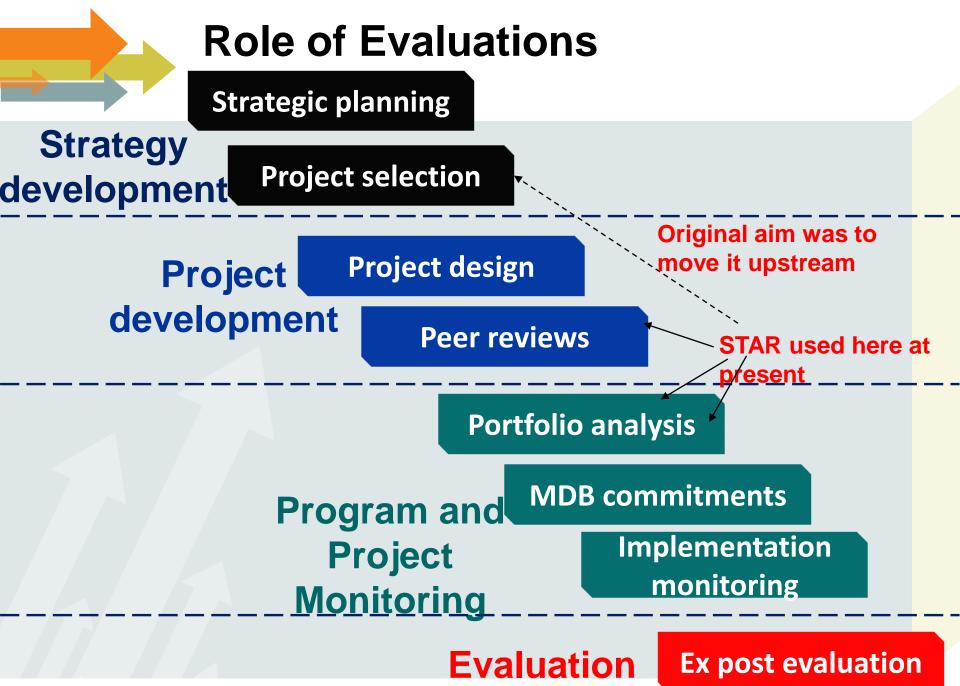
Policy: Single toll per vehicle crossing of the border at Aranyaprathet *Outcome:* Overloaded vehicles

Strategies/ plans/projects should be market-oriented


- Facilitating appropriate responses by firms and individuals
- What government & development institutions do may only be the minor part of what needs to be done
- Besides government agencies are often slow moving & part of the "problem"
- Local government may need to be strengthened as a primary method of delivery

Session 3: Why is concept important?


Identification / concept in theory


- Nice to think thorough diagnosis <u>always done</u>
- Goals/ objectives first
 strategic framework
- Then problem identification approach
 alone may not fit with desirable strategy
- So 'bottom up/ top down' approach is likely best

Source: ADB 2007. *Guidelines for preparing a design and monitoring framework. A toolkit for developing a participatory design and monitoring framework.*


Another approach: ADB's STAR

ADB 2014. *Toward a Sustainability Appraisal Framework for Transport*: Working Paper 31. January.

Another approach: A-S-I approach

GIZ (2010), *"Transport and Climate Change"* Module 5E of Sustainable Transport: A Sourcebook for Policy-makers in Developing Cities.

Another proposed approach for needs and design

Promoting Pro-Poor Growth

A PRACTICAL GUIDE TO EX ANTE POVERTY IMPACT ASSESSMENT Tool adapted from OECD proposed for ADB Urban Transport – not implemented

- Poverty and spatial analysis
- Stakeholder and institution analysis
- Transmission channels
- Aggregate impacts

Rebecca Mann, Intern ADB 2011. Social Sustainability and Urban Transport, presentation 2011

1. Detailed poverty/spatial analysis

Issue	Observations		
Where do the poor live?	Do the poor live in high-density inner city housing? In outer-urban areas? How is this projected to change (if at all) in the medium to long term?		
Employment opportunities	Where are formal and informal opportunities for low, medium and high- skilled work located? Where are opportunities likely to develop in the medium to long term?	•	These issues usually covered
Employment (all)	Where do the poor work? How do they get there (ie. motorized vs non- motorized, public v private transport)? At what times do they travel? How long do they spend travelling and waiting? How many transport modes and interchanges are required to reach their destination?		as part of project poverty
Employment (Women)	Where do poor women work? How do they get there? At what times do they travel? Do they travel with children or goods? How long do they spend travelling and waiting? How many transport modes and interchanges are required to reach their destination?		analysis by World Bank or
Basic needs	Where do poor people buy food and other necessities? How do they travel there? How do they transport goods?		ADB
Education	Where do poor children go to school? How do they get there? Does this differ by gender?		They are usually
Health services	Where are clinics and health services located? What difficulties do the poor experience in travelling to them?		assessed in
Cultural/Religious/Social	What specific places do the poor travel to socialise and worship? What social opportunities are the poor currently unable to access due to transport constraints?		response to a
Young people	Where do young people socialise? How do they get there? Does this differ by gender?		project concept not as an input
Vulnerable social groups	What are other specific places the elderly, women or girls, ethnic minorities or other vulnerable social groups need to travel, if any?		not us un input
Intermediate travel	Do the poor need to use intermediate travel modes (walking, bicycle, non-motorised transport) to access public transport?		
Inter-urban travel	Do the poor travel outside the city for employment or other reasons? How do they travel?		
Barriers	Does transport infrastructure (i.e. roads and railways) create obstacles to accessing employment and other places the poor need to go?		

Rebecca Mann, Intern ADB 2011. Social Sustainability and Urban Transport, presentation 2011

3. Transmission channels & results

Transmission Channels		Details of the change	change Channel		Risks that the results	
		initiated by the intervention	Short Term	Medium Term	will not be achieved	
Prices (affordability)	Transport service provision (by mode) Transport service use (by mode)					
Transfers (affordability)	Subsidies					
Access	Primary Schools Secondary Schools Employment Hospitals and health services					
Health and Safety	Road safety Level of crime Congestion Pollution					
Employment in transport sector	Formal Informal					

Rebecca Mann, Intern ADB 2011. Social Sustainability and Urban Transport, presentation 2011

Module 3: T	ransmission channels	²⁰ used and overall i	results by (channel			Transmiss	ransmission Channels Details of the change initiated by the		initiated by the		Risks that the results will not	Possible mitigation
		Details of the	Anticipate	d Results	Risks that the results will not be	Possible mitigation			intervention	Short term	Medium term	be achieved	measures
Transm	ission Channels	change initiated by the intervention			achieved	measures			Spatial analysis shows three main categories of workers use non-	Large increase in number of	Small growth of		Cross-city bus services designed to
			Short Term	Medium Term				Employment and income	motorised and informal transit services to	pedestrians, increased use of buses, possible	inner urban residential		complement bus rapid transit
	Employment and income sources							sources	access CBD and will need to find alternate transport: security and	overcrowding at public transport stations in CBD at	population: relocation closer to work		routes, safe-road crossing infrastructure to
	Health and public services						┝		retail, domestic workers and street vendors.	peak hours.			accommodate pedestrians.
Access	Schools								Three schools are	Limited – few children attending	More traffic around schools		Traffic calming
	Mode share Congestion and							Schools	within the CBD and can no longer be reached by non-motorised transport	these schools use non-motorised or	at peak hour: higher risk to children when	-	measures in school proximity
	barriers								non-motoriaeu transport	informal transport	crossing roads		
	Transport service provision (by mode)						Access	Health and	One public hospital and three nursing clinics are	Immobile face increased cost to access health	CBD nursing clinics		Nursing clinics and hospital
Prices	Transport service use (by mode)							public services	within the CBD and can no longer be reached by non/motorised informal	services as there is no bus or rail route near the hospital:	experience small decline in patient numbers	-	operate a bus shuttle from central bus depot
	Land, housing and other prices								transport	will need to use taxis or walk	numbera		central bus depor
Transfer payments	Subsidies							Mode share	Regulation requiring shift to motorised and				
paymonto	Tolls and taxes								pedestrian modes				
Health and	Pollution and emissions								Restrictions imposed		Limitation on other modes	Transport ban is not enforced by traffic	Measures to
Safety	Transport user safety							Connection	within an area of six square miles, four full-	Average trip time across CBD	induces higher number of car	authorities, penalties do not	increase enforcement and
	Pedestrian safety							Congestion and barriers	time traffic police	reduced by 6	and bus trips: congestion may	deter informal	compliance with ban introduced
Employment in transport	Jobs created/lost								enforcement of ban.	minutes.	return to original levels over the	transport operators who continue to	concurrently with ban
sector	Wages										long term.	enter the CBD.	

Rebecca Mann, Intern ADB 2011. Social Sustainability and Urban Transport, presentation 2011

- Needs of whom? To where? from where?
- When? Why?
- How to respond options, channels?
- Impacts & incidence?
- Minimize/ avoid negatives
- Compatibility with strategies? Future users?
- What don't we know?
- Where do we get the information from?
- Strengths & weakness of tick box approach?

Session 4: Innovative approaches

1. China-GEF-World Bank Urban Transport Partnership Program

- Instead of going project by project – do a program and incentivize cities
- 14 cities + 1 province 2007-2013
- GEF climate funds (\$20m) to sub-national governments via National Development and Reform Commission – for studies, project preparation and policy/ standard setting
- Similar programs in India and Latin America
- Outcomes see over

Refer World Bank 2015. Implementation Completion Report, Report No: ICR00002509, June

Estimated CO2 emissions over 10 years and Marginal Abatement Cost

City	Details	Investment (USD million)	CO2 Emission Reduction (million ton)	Marginal Abatement Cost (USD/ton)
		BRT		
Urumqi	4 corridors	340.4	0.51	665
Zhengzhou	8 corridors	120.0	0.63	191
Jinan	5 corridors	220.7	0.21	1,068
Nanchang	1 corridor	50.0	0.15	336
Sub-total		731.1	1.50	489
	Inte	grated PT/NMT	Improvement	
Changzhi	4 corridors	111.2	0.01	8461
Weihai	3 corridors*	114.6	0.32	361
Sub-total		225.8	0.55	682
	Т	ravel Demand M	anagement	
Guangzhou		10.0	2.10	5
Sub-total		10.0	2.10	5
Total		967	3.93	246

2. Case study on building local government capacity, Indonesia

- National road agencies given money to build regional city bypasses (ie new primary roads)
- Money & authority for planning & construction given to local governments for "Quality of Life" improvements
- Local governments had freedom to meet local needs as long as specified criteria were met eg:
 - Prepare structure plans
 - Local road network plans (secondary & local roads)
 - Pedestrian, non motorised transport, amenity, traffic management & drainage improvements on integrated basis

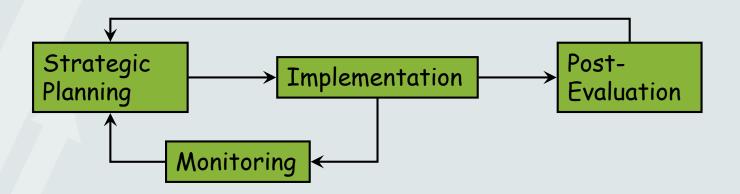
3. Taxi liberalization, Bangkok

- **Problem:** in 1991 12,000 very old Taxis in Bangkok
- Controlled by small group of influential people
- Fares relatively high & taxi quality & availability low
- **Challenge:** how to reform/ modernize?
 - Alternative 1: offer scrap incentives (e.g. like in proposed Motorcycle Upgrade Program)
 - Alternative 2: liberalize/ open up taxi market to anybody with vehicle of certain quality

- What actually happened?
 - Taxi market was liberalized in 1992
 - Within one year there were 30,000 new taxis on the road
 - By 2005, there are in excess of 50,000 taxis on the road with high availability & fares lower in real terms than in 1992

4. Transit route associations

- Problems of small transit vehicles – congestion at stops etc, unruly driving, pollution
- Traditional government response is to replace with state-run bus enterprises
- Alternative approach: create a new "community of interest" in having small operators work together to manage driving behavior, match supply to demand etc

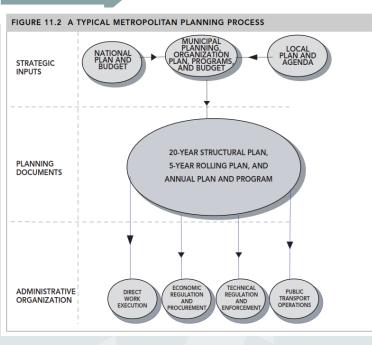


- Route associations exist in Thailand, Philippines, other Asia, Pacific Islands, South America & many other countries
- General principles:
 - Leadership (eg Mayor, Chief of local Dept of Land Transport office)
 - New incentive structure eg based on revenue for route rather than revenue collected per vehicle
 - Penalties
 - Quality NOT quantity competition
- Tends to work best in low demand situations regional cities where "people know each other"

Would route associations have been a solution in Cebu?

- Why review: post-evaluate & monitor...encompasses
- Post-evaluation process aims & objectives, strategy & plan, data collection & analysis, reporting
- Monitoring integral to strategy design
- Performance measurement
- Data collection

Project preparation in context



Preparation/ feasibility – engineering, demand, economic, financial, environmental and social (+ve and –ve not just compliance)

- Often called 'business case'
- Cover demand and economics later

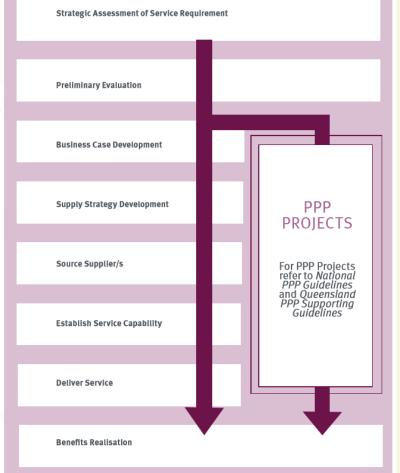
Source: Adam Smith International (2014), "Assessment of the Effectiveness of Project Preparation Facilities in Asia." Report prepared for the G20 Working Group. September + Author's additions

Desirable eco-system (revisited)

World Bank, 2002. Cities on the Move.

- Does it exist for Cebu BRT?
- What about where you come from?

Instrument	Content	Time Frame		
Policy	Directional intent e.g. reduce road fatalities, achieve certain urban air quality levels, limit GHG emission from transport, create universal ru- ral, urban and national level access	Long term		
Strategy and Plan	Strategy/ long term plans integra- ted with land use (10 to 50 years) - directional in nature, sub-sectori- al/ spatial priorities, broad sequen- cing of land use, transport	ong term 0 - 50 years -2 year committed projects, 3-5 ear indicative investments awaiting unding approval Ince implemented projects have a		
	Medium term plans – detailed pro- ject identification, priority setting			
Program	Investment programs (on rolling basis), consisting of projects and other initiatives including TA and capacity building.	1–2 year committed projects, 3–5 year indicative investments awaiting funding approval		
Project	'Ready to implement' projects iden- tified in programs	Once implemented projects have a long life		


Project preparation purpose and form

- Formal presentation of information to support decision to proceed with a proposal and to secure necessary approvals
- May be a self-standing document so that all information is in one place
- Supporting documentation would include options analysis, engineering designs, land acquisition requirements, cost estimates, economic and financial appraisals and social and environmental assessments

- 1. <u>Project decision</u> project context, problem addressed, service requirements, the options considered & justification for the recommended solution, i.e. including all appraisals (demand, economics etc.)
- Financing decision how the project is to be financed including consideration of a PPP if appropriate, and considering ongoing costs, not just initial capital.
- 3. <u>Implementation decision</u> how it is to be delivered, e.g. institutions, contracts, schedule
- 4. <u>Monitoring and review</u> have expected benefits been realised?

Project Assessment in Australia – multi-step process

Source: https://www.treasury.qld.gov.au/publicationsresources/project-assessment-framework/paf-policy-overview.pdf

Key Aspects (1)

- Project decision:
 - Needs
 - Options generation
 - Base case definition
 - Project case definition

Contrast with WB PAD

- Discussion of needs
- Discussion of options

- Demand analysis effect on project design and project viability
- Economic/ other analysis priority
- Risk identification
- Optimization scaling project to level of benefit

Key Aspects (2)

• Financing decision:

- Risk allocation management of risk
- Affordability are funds available from relevant sources (public/private) to meet costs?
- Value for Money assessment
- Procurement strategy e.g. PPP & modality
- Implementation decision:
 - Institutional arrangements
 - Governance

Word of caution: is this the best way to spend the money to solve the problem? – real life problem is the project has a life of its own.

Chronology of Cebu BRT

- 2011 and before pre FS
- 2011/12 project preparation at FS level by DOT with WB support
- Initial WB project appraisal document prepared but not approved – 2012
- National Economic Development Authority was concerned that land acquisition costs had been underestimated – 'initiated value engineering' review of FS (January-June 2014)
- WB project appraisal document prepared but not approved September 2014 – cost estimates and other details almost unchanged from 2012
- In second half of 2016, detailed design underway and completed by end 2016

The Cebu BRT

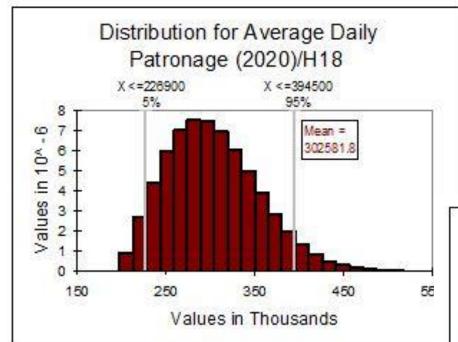
- Refer BRT overview handout (limited copies)
- PID (concept)/ PAD
- Key point is this is a sovereign loan project (\$116m) although there is a CTF concessional loan (\$25m) + GoP is a significant financier

	TOTAL COST	IBRD	CTF	GoP
1. BRT Infrastructure and System	162.0	80.2	8.8	73.0
2. Traffic Management	15.6	-	13.2	2.4
3. BRT Concept Dissemination and Development	7.0	4.0	-	3.0
4. Urban Realm Enhancements	3.0	3.0	-	-
5. Project Outcome Monitoring	5.0	3.9	1.1	-
6. Project Management	6.1	6.1	-	-
Base Cost Total	198.7	97.2	23.1	78.4
Price contingency Physical contingency	11.1 18.7	7.2 11.6	0.8 1.1	3.1 6.0
TOTAL	228.5	116.0	25.0	87.5

Indicative Project Cost (US\$ million)

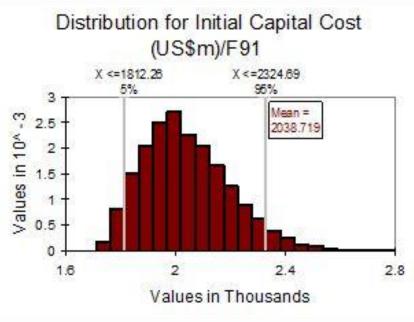
Contingency about 13%

2014 cost estimate based on FS level - conceptual only


Category of Project	Types of Project	Applica	ble Uplift
		P50	P90
Roads	All roads	15%	45%
	Bus lanes		
	Bus Rapid Transit		
	Other non		
	motorized		
	transport		
Rail	Metro	40%	68%
	Light Rail		
	Guided bus		
	Conventional rail		
	High speed rail		
Fixed links	Bridges	23%	83%
	Tunnels		

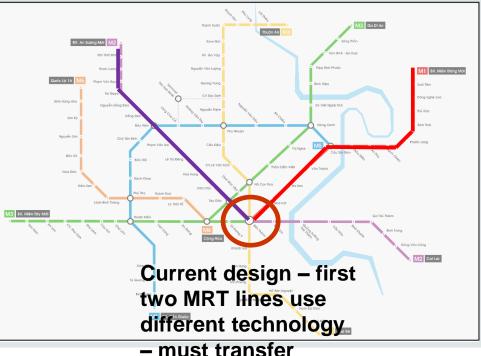
UK Capital Expenditure Optimism Bias* Uplifts

(*) includes risk. Based on typical level of detail in business cases with no detailed design


Source: Summarized from B. Flyvbjerg, 2004. Procedures for Dealing with Optimism Bias in Transport Planning, Guidance Document. Published by the Department for Transport, UK. Page 32.

Tendency for demand to be overestimated & cost to be underestimated and the time frame to be much longer in practice

By this stage, even if there is information to indicate a project is not viable – project usually continues


Scope for technical optimization – value engineering - HCMC

Terminal station inappropriate for modern MRT

Often huge scope for optimization – but institutional barriers as in HCMC

Or where bus services stop at municipal boundaries – common in Asia even though metro area has overspilled its boundary

Current implementation risk assessment (June 2017)

Systematic Operations Risk-rating Tool

Risk Category	Rating at Approval	Previous Rating	Current Rating
Political and Governance	2	Substantial	Substantial
Macroeconomic	÷	Moderate	Moderate
Sector Strategies and Policies	#	Substantial	Substantial
Technical Design of Project or Program	2	单 High	🟓 High
Institutional Capacity for Implementation and Sustainability	7 .	• High	• High
Fiduciary		Moderate	Moderate
Environment and Social	5	Substantial	Substantial
Stakeholders		Substantial	Substantial
Other	2	1220	<u>12</u> 31
Overall	22	High	e High

Cuttaree, Vickram; Cuttaree, Vickram. 2017. *Philippines - Cebu Bus Rapid Transit (BRT) Project : P119343 - Implementation Status Results Report : Sequence 06.* Washington, D.C. :World Bank Group. http://documents.worldbank.org/curated/en/139641496384385116/Philippines-Cebu-Bus-

Rapid-Transit-BRT-Project-P119343-Implementation-Status-Results-Report-Sequence-06

- For the Cebu BRT identification likely to have been adequate? Assuming it is, what would you think would have been essential to be sure of?
- What residual risks may there be to the revision to detailed design is not completed in terms of:
 - Costs/ scope of design
 - Demand
 - Safeguards incl. land acquisition
 - Other
- What would you suggest to improve the WB proposal? Or alternatives?
- What about view of a private investor

Readings for later:

- PAD scan through only
- Integrated safeguards sheet – scan through only
- Implementation Status Reports

Exercise: putting your team together

You are the Cebu Project Owner's representative

- What are some basic things that are essential to have decided before hiring the project preparation consultants?
- How would you respond if the World Bank task manager suggested you needed an output contract (as opposed to an input contract)?

Some key things

- Clear objective & timeline
- Describe issues & provide relevant information don't let consultants have to guess – tell them the budget
- Activities but don't be too prescriptive, define deliverables
- Team avoid precise team descriptions describe skills needed
- International/ regional/ national mix don't specify? Or if you do, only to ensure you have local skills?

Enhancing environmental outcomes - why target jeepneys

- Major source of fossil energy use, air pollution and greenhouse gas emissions
- Outdated technology
- Poor maintenance practices
- Poor vehicle design (mass, ergonomics and drag)
- Inefficient driving behaviour
- Traffic congestion contribution

Target gross polluters from air pollution point of view (PM)

Jeepneys

Average Speed			Ave	erage Sp	eed		Av	erage Sp	eed				
		10	20	30		10	20	30		10	20	30	
		Ligh	t Duty Veh	icles		Hear	y Duty I	Buses		Heav	y Duty T	rucks	
HC	-	0.52	0.32	0.25	10	2.35	1.31	0.93	10	1.46	0.93	0.71	
CO	1994	1.88	1.32	1.07	36	10.17	6.59	5.11	1995	13.12	10.35	9.02	
NOx	-15	2.97	2.34	2.03	-15	19.68	12.00	8.98		15.02	10.44	8.44	
CO2	Pre-	414.74	317.95	272.17	Pre-1995	1299.06	843.09	654.71	Pre	1163.51	921.26	803.67	6.00
PM	I	216.18	187.54	172.59	щ	1319.11	962.30	800.18	щ	2445.90	1859.44	1583.94	5.00
нс		0.26	0.04	0.00		1.01	1.10	0.00		1.65	1 1 0	0.06	4.00
CO	96	0.36	0.24	0.20	P.	1.81 17.40	1.10 16.02	0.82	97	1.65 4.24	1.18 3.46	0.96	
	6-+	1.51 3.37			б ц								x 5 .00
NOx	1994-9		2.60	2.24	1996-97	22.45	13.30 999.87	9.80	1996-	14.24	10.88	9.30	2.00
CO2 PM	16	409.56 153.14	322.43 155.50	280.32	1	1317.69 1928.59	999.87 1759.84	850.79 1668.06	16	1185.70 933.68	980.67 880.38	877.59 850.62	1.00
PM		153.14	155.50	156.90		1928.59	1759.84	1668.06		933.08	880.38	850.62	
HC		0.34	0.21	0.16	0	0.85	0.46	0.32	0	1.83	1.22	0.97	
со	66	1.83	1.08	0.79	-2000	18.21	15.42	13.99	-2000	4.24	3.46	3.08	Crosspolluter Cr
NOx	-76	2.87	2.23	1.93	P	19.68	12.00	8.98	P	15.02	10.44	8.44	Collute Unco Conformation
CO2	1997.	437.58	342.34	296.56	1997.	1789.18	12.00 3.98 13.02 10.44 0.44 18 1154.76 893.83 9 620.84 522.00		St Uniton Ced of Ced of				
PM	•••	169.94	166.20	164.05	i	835.09	620.84	522.00	1	1283.03	925.60	764.66	
HC	00	0.27	0.19	0.16	5	1.83	1.05	0.76	5	0.83	0.55	0.43	
CO	2000	1.70	1.37	1.21	2001	6.36	3.72	2.72	2001	5.40	3.61	2.85	
NOx	er	1.45	1.14	0.98	er 5	13.50	9.47	7.70	10	15.07	10.03	7.91	
C02	after	420.66	342.25	303.35	after	1474.90	1038.44	845.75	after	1438.36	1009.98	821.27	
PM	a,	138.24	145.44	149.83	a a	1116.67	982.14	911.09	σ,	447.67	410.40	390.06	1

World Bank 2009. Draft Report. Developing Integrated Emissions Strategies for Existing Land Transport (DIESEL). Bangkok, Thailand

Enhancing environmental outcomes

Rough CO2 estimates:

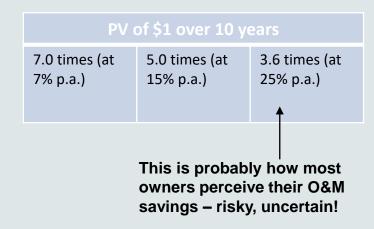
- 8,300 jeepneys PUJs in Cebu, Low load factors in off peak
- Many with pre-Euro technology next slides
- AM peak forecast for BRT 26,000 pax of which 90% from jeepneys so around 2,600 jeepneys potentially replaceable in short term
- Jeepney about 20 tonnes of CO2 per year
- So, rough estimate of CO2 saving of 50,000 tonnes p.a. (Tables 7.4 and 7.6 of Annex 7 of PAD shows saving of 60,000 tonnes p.a. from jeepneys of city-wide total of 70,000 tonnes p.a.)

Regulatory and financing options

Options	Challenges	
Let jeepney licenses expire (assumed for Cebu BRT)	Substantial illegal operations – many owners drivers feel they have 'grand fathered rights' – need a detailed analysis of 'political economy'	
Emission standards	Apply to new vehicles – in-use vehicle testing lax – difficult to fix	
Buy back	Cost US \$6-10k per vehicle* – need to ensure does not re-enter operations, cost of administration of scrap program	
Upgrade incentives (technology options/ financing)	See next slides	

(*) vehicle assumed to be worth little. The license represents most of the value.

Technology options


\$23,000

Savings pf \$880-
1,600/p.a. = average of
\$1,240p.a.

Technology	Capacity in seats	Replace- ment ratio	Investment cost (PHP)	O&M cost / month (Php)	Savings / month (Php)	Yearly greenhouse gas emission reductions (Tons CO2 e)
Euro 4 Diesel Jeepney			1,100,000.00	6,302 to 16,195	3,523 to 6,321	4.24 to 7.95
Euro 4 LPG Jeepney			850,000.00	10,560 to 28,061	(733) to (5,545)	1.41 to -1.26
Electric Jeepney	20	1:1	950,000.00	8,797 to 48,456	1,028 to (1,806)	6.99 to 10.26
Diesel-Electric Hybrid Jeepney			1,574,000.00	4,114 to 22714	5,712 to 5,894	6.36 to 7.84
Euro 4 Diesel Minibus	40	1:2	1,800,000.00	9,066 to 23,236	10,586 to 21,795	11.14 to 21.13
Euro 4 Diesel Bus	60	1:4	4,500,000.00	24,232 to 64,072	15,072 to 25,990 30,003 to 46,341 (with Fare Adi.)	16.91 to 28.20
Source: Jose Bienvenido Manuel Biona, undated. Shift to Cleaner Jeepneys in Metro Manila: Cost and Benefits.						

Rough financing assessment

Item	Interest rate					
	@ 7%	@ 15%	@ 25%			
PV of O&M savings	\$8,700	\$6,200	\$4,450			
Financing gap per vehicle	\$14,300	\$16,800	\$18,600			
% of new vehicle cost defrayed	38%	27%	19%			

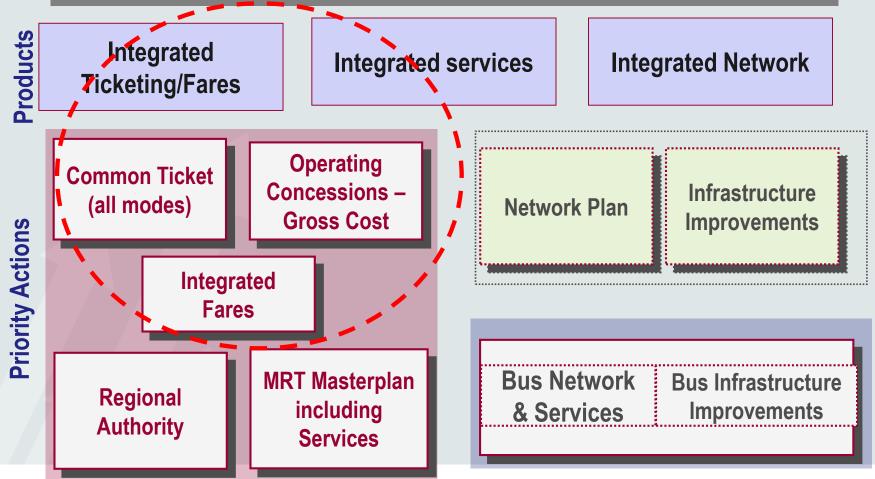
CO2 cost-effectiveness summary

Option	Capital cost USD	CO2 saving p.a. (first year)	USD\$ per 1 st year tonne CO2 reduced
BRT and let jeepney licences expire	\$210 million (no traffic management)	60,000 tonnes	\$3,500/tonne
Buy-back	\$6,000 per old jeepney (guess) + scrap admin.	20.0 tonnes per vehicle	\$300 per tonne
Financing incentives (implied)	> \$14,000 vehicle	5.0 tonnes per vehicle	\$2,800/tonne

Discussion

• Why not buy-back?

Session 5A: Institutional analysis



Integrating transit - key components

Desired outcomes

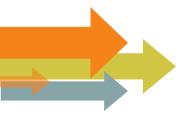
- 1. Affordable & convenient
- 2. Quick & predictable
- 3. High quality clean, comfortable 4. Accessible, integrated, connected

3 things to consider....1

Functions and how they are distributed – e.g. Bangkok

- 3 agencies for rail
- 1 state monopoly for buses + others
- **2** traffic authorities etc

Function	Transport sector agencies						
	Rail and MRT	Other Public Transport	Roads & Road Vehicles	Traffic & Street Management			
Policy and Planning							
Policy and Planning	MOT/OTP & SRT	MOT/OTP & DLT	MOT/OTP, DOH & ETA	BMA & OTP			
Program developme	nt and management for	r infrastructure prov	ision	-			
Design	MOT/OTP, SRT, MRTA and BMA	MOT/OTP, DLT	DOH, ETA, DRR, BMA	BMA			
Construction preparation & management	MRTA, SRT, BMA	BMTA, Harbors Department under MOT	DOH, ETA, DRR, BMA	BMA			
Delivery of works	MRTA, SRT, BMA & private contractors	BMTA and Harbors Dept. (MOT) & private bus and water transport operators	DOH, ETA, DRR, BMA & private contractors or concessionaires in case of DMT and SES II toll roads.	ВМА			
Maintenance	SRT, BTS, BMCL	BMTA and Harbors Dept. (MOT) & private bus and water transport operators	DOH, ETA, DRR, BMA	BMA			
Financing	Government budget for SRT, Blue Line and Green Line extension civil works	Government budget and revenue from passenger fares	Government budget, private financing in case of DMT and SES II toll roads.	Government budget			
Service delivery, inc	luding operations & m	aintenance					
Provision	BMCL, BTS, SRT	BMTA & private bus and water transport operators	DOH, ETA, & private concession- aires for DMT and SES II toll roads	BMA, Traffic Police			
Ticketing and marketing	BMCL, BTS, SRT	BMTA & private bus and water transport operators	As above for toll collection	na			
Service specification	MRTA, BMA, SRT	LTCB, DLT	na	na			
Contracting	MRTA, BMA, SRT	BMTA	DOH, ETA, DRR, BMA	na			
Contract compliance	MRTA, BMA, SRT	DLT, BMTA	DOH	na			
Financing	BMCL, BTS, SRT	Government budget and revenue from passenger fares	na	na			
Regulation & enforcement	Part of contract	DLT, Police and Harbors Department	Police DLT for vehicle registration/ fitness & driver authorization	Police			


Table A.5: Current Transport Agency Functions

3 things to consider....2

Level of government


Strategy level	Function	Agency	Comments
"For the city"	National roads Public enterprises Tax levels Intergovernmental transfers	Ministry of construction Ministry of economy Treasury Treasury	Private sector construction Sometimes municipal
	Regulation and competition policy Vehicle registration and safety	Ministry of economy Ministry of transport	May be function of a quasi- independent commission
"Of the city"	Urban structure planning Strategic transport planning Local road management Public transport planning and procurement Traffic management Law enforcement Road safety	Planning department Transport department Roads department Public transport agency Traffic department Police department Interdepartmental unit	Direct responsibility to mayor Sometimes national
"In the city"	Public transport operations Road construction and maintenance Local facility consultation	Private companies Private companies NGOs and individuals	Franchised or contracted Some force account maintenance typical Sometimes under formal public inquiry laws

World Bank, 2002. Cities on the Move.

3 things to consider....3

Allocation of functions

Mapping Cebu's transport functions

	Transport Sector Agencies					
Function	Rail	Other Public	Roads & Road	Traffic &		
Function		Transport	Vehicles	Street		
		_		Management		
Policy and Planning						
Policy and Planning						
Programme Developme	ent and Managen	nent for Infrastru	cture Provision			
Design						
Construction						
Preparation &						
Management						
Delivery of Works						
Maintenance						
Financing						
Service Delivery, include	ing Operations (& Maintenance				
Provision of services						
Ticketing and						
marketing						
Service planning and						
specification						
Procurement/						
tendering of services						
Contract Compliance						
Financing						
Regulation						
Regulation &						
Enforcement						
Certification and						
safety						

Discussion

Day/ time	Торіс				
Wednesday 11 October					
12.30-12.45	Introduction				
12.45-13.00	Transport and the global agendas				
13.00-13.45	How are projects prepared? - Overview				
13.45-14.15	Why is concept important?				
14.15-15.00	Innovative approaches				
15.00-15.30	Break				
15.30-16.30	Closer look at project preparation				
16.30-17.00	Exercise: putting your team together				
Thursday 12 October					
09.00-10.30	Demand and economic appraisal				
10.30-11.00	Break				
11.00-12.00	Identifying risks and potential role of private sector				
12.00-12.30	Wrap-up				