

Zero Waste as a vehicle to realise Green Economy in Southern Africa

Prof Cristina Trois

Dean and Head of School of Engineering University of KwaZulu-Natal, South Africa

EXAMPLE 1 Chair of Southern Africa Regional Secretariat of UN-IPLA Programme and IWWG

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership

City of Borås, Sweden, 9-11 September 2013

Outline

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa **Prof Cristina Trois**

In South Africa...

108 Mt total waste generated
 98 Mt waste landfilled
 10% approximate percentage of total waste that is recycled

(Source: DEA, 2012)

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

Waste Hierarchy

- According to the Danish Energy Agency, calorific value of waste is on average 10.5 MJ/kg
- This means that **4 tons of waste** can substitute **1 ton of oil** or **1.6 tons of coal**
- **1** ton of waste can produce **2** MWh for district heating and **0.67** MWh of electricity

WASTE

RESOURCE

Component	Biodegradable?	Combustible?	Recyclable?
Paper & Card	1	1	1
Yard / Green	1	1	1
Kitchen	✓	\$	1
Wood	✓	s	1
Textiles	(✓)	5	1
Metals	*	*	✓
Glass	*	*	1
Plastic	*	✓	1
Stones / fines	(*)	*	(✔)

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa **Prof Cristina Trois**

Developing a Landfill Waste Volume Reduction Strategy

The eThekwini Municipality

Phase 1B Volume Distribution

Phase 1C Volume Distribution

Phase 2A Volume Distribution

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

Developing a Landfill Waste Volume Reduction Strategy

The eThekwini Municipality

IPLA City of Borås, Sweden, 9-11 September 2013

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership Time (years)

Zero Waste as a vehicle to realise Green Economy in Southern Africa **Prof Cristina Trois**

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

Integrated waste treatment system

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership

IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

Dean and Head of School of Engineering, University of KwaZulu-Natal, South Africa

8

CDM Landfill Biogas-to-Energy Project

1st CDM Landfill Biogas-to-Energy Project in Africa

- Bisasar Rd landfill extracts approximately 350 m³/hour, Component 1 produces approx. 9MWh
- Mariannhill landfill -180 m³/hour is produced and an estimated 1775 m³/hour by 2024. Approximately 900 kWh of electricity is generated

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

Integrated waste treatment system

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

Material Recycling Facilities (MRF)

JOB CREATION POTENTIAL

A small dirty-MRF processing 160 to 250 tpd can employ up to 150 on a full time basis

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa **Prof Cristina Trois**

11

Biological – Composting

VCU

GiCom IVC

Open windrow

ASP

- Throughputs- from 500tpa to 150,000+ tpa (scalable, expandable subject to technology)
- Cost of technology-Affordable, (cheap) subject to plant compliance requirement (ABPR) and configuration
- **Energy balance-**Does not produce energy, nett energy user

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Food Wastes AD

ANAEROBIC DIGESTION (AD) &

Schematic Layout: Proposed Anaerobic Digestion (AD) Food Waste Treatment Plant (not to scale)

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership

Biological – Anaerobic Digestion (AD)

Clarke-Haase

Kuettner

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013 UTS

- Throughputs- from 5,000~10,000 to 150,000+ tpa Subject to AD type, (scalable, expandable subject to technology)
- Cost of technology- Expensive, subject to plant compliance requirement (ABPR)
- Energy balance- Produces Biogas→Heat, Electricity, Vehicle Fuel, Industry,

JOB CREATION POTENTIAL

4 to 6 permanent jobs are created per ton of waste provided to an AD plant. An AD plant that treats 12k tpa (35tpd) could generate over 200 permanent jobs.

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

AD Bankability

Factor to be	Wet AD	Dry AD (low solids)	Dry AD (high solids)
considered			
Typical feedstocks	Low solids liquid products, dairy products, food waste only, fruits and vegetable	Food waste, fruits, medium and high solids liquid products, some green waste	Food waste, green waste (as bulking agent), fruit and vegetable, putrescible high solid content products
Flexibility in feedstock fluctuation	Low	Medium	High
Ease of expansibility	Low /None	Medium	High
Scalability	High: from 1,000 tpa subject to technology	Medium: from 5-8,000 tpa subject to technology	Medium from 8-10,000 tpa
Footprint required	Low	Medium	High
Outputs	Primarily Liquid digestate	Liquid and solid digestate	Primarily Solid digestate
OPEX	High	Medium	Low

Example: AD Plant – 12k tpa may realise up to 0.5MWe at a total capex of some R30-40m (approx. 2-3m EURO).

Project Structure

Project Programme

Feasibility & Financing Development EIA Concept Design

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa **Prof Cristina Trois**

Thermal – Incineration or Pyrolysis and Gasification

Basic Description

- Incineration is a thermal technology that involves <u>complete combustion</u> of waste with <u>excess air/oxygen</u> conditions
- Gasification and Pyrolysis are thermal technologies that involve <u>partial</u> <u>combustion</u> of waste <u>under reduced</u> or <u>no oxygen</u> conditions
- Throughputs- from 500 tpa to 150,000+ tpa (easily scalable, expandable)
- Cost of technology- Expensive, subject to plant *emission compliance* requirement and type of technology
- Energy balance- Produces energy (subject to syn-gas usage), Pyrolysis requires input energy

PLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership City of Borås. Sweden. 9-11 September 2013

EfW Bankability

Technology Category	Continuous Gasification- Staged Combustion	Gasification with Plasma Conversion	Batch Gasification- Syngas generation or Staged Combustion		
Energy Generation Technology	Steam Turbines	Gas Engines	Steam Turbines or Gas Engines		
Typical Feed Preparation	Minimal/No Significant Requirements	Moisture Reduction and removal of Recyclables	Removal of non-combustible materials and significant size reduction for homogeneity in process		
Anticipated By- Products/Outputs	Bottom Ash – 12-15% wt Fly Ash – 8-10% by wt Includes particulate filter residues	Basalt like output – 12-15 % wt Scrubber Residue – 2-3% wt	Ash – 15-25% wt Includes particulate filter residues		
Energy Usage	Parasitic Load ~10-15% of generated capacity	Parasitic Load ~30-40% of generated capacity	Parasitic Load ~12-18% of generated capacity		
Energy Generation	Energy ~1.2 – 1.4MWe generated per tonne waste	Energy ~1.0MWe generated per tonne waste	Energy ~1.2 – 1.4MWe generated per tonne waste		
Scalability	Moderate flexibility from 50 to	Commercial scale ~100 to 200	High flexibility from 1 to 100		
	400+tonnes per day	tonnes per day	tonnes per day		
CAPEX	Moderate	Moderate to high	Moderate		
OPEX Moderate Moderate to high		Moderate to high	Low to moderate		

AD & EfW Bankability

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa **Prof Cristina Trois**

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa **Prof Cristina Trois**

Scenario Analysis for Municipalities

- Zero Waste Model
- Assist LAs in formulating sustainable WM strategies
- Resource recovery (i.e., waste-to-energy)
- Quantitative assessment of GHG reduction & landfill space savings
- Waste stream analysis: "knowledge gaps"
- Financial feasibility leading to scenario analysis

PLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership City of Borås, Sweden, 9-11 September 2013

Dry-wet waste diversion model

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership

IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

Dean and Head of School of Engineering, University of KwaZulu-Natal, South Africa

22

WASTE	EVALUATION CRITERIA						
MANAGEMENT STRATEGY	Implementation Requirements	Technical Feasibility	Impacts to Environment & WM Systems				
Source Separation	Public Participation. Provision of separate bins, or refuse bags. Weekly collection services.	Source separation of paper employed in most areas of eThekwini, better service delivery is required.	Initial separation reduces contamination of waste (increases quality for other strategies such as anaerobic digestion).				
Landfill Gas Recovery	Landfill gas recovery systems & electricity generation equipment	Technically Feasible as landfill gas recovery has been implemented at eThekwini landfill sites	Reduction in emissions through energy production. Reduction of odours.				
Composting	Capital cost varies, depending on type of composting method. Separation of biogenics	Technically feasible: composting is a well developed process.	Production of compost, which reduces use of chemical fertilisers.				
Anaerobic Digestion	Significant capital investment. Separation of biogenics Legislation/Incentives. Creation of a market for AD products.	Many processes and technologies available. Potential for implement- ation under CDM.	Reduction in emissions through energy (biogas) production. Production of digestate for use as fertiliser or soil conditioner.				
Thermal Treatment	Significant capital investment. Separation of combustible waste.	Further research into technologies such as pyrolysis required - not widely implemented.	Reduction in emissions through energy recovery if implemented. Emission of pollutants & heavy metal particulates				
Recycling	Public participation. Greater incentives to strengthen recycling market.	Technically feasible. Recycling centres/prog- rams in place currently.	Preserves natural resources. Increased carbon sequestration.				
Mechanical Biological Treatment	Combination of AD/ composting & MRF separation processes.	As above for AD & composting. Feasible: MRF at Mariannhill landfill.	As above for recycling & composting/anaerobic digestion.				

What is the W.R.O.S.E model?

- W.R.O.S.E. = Waste & Resource Optimisation Scenario Evaluation
- WM Strategies: landfill, landfill gas recovery, recycling, AD and aerobic composting
- Evaluates GHG emissions reductions from applying waste diversion strategies
 - Emission factors developed by the US EPA for WM strategies and together with an estimated emissions factor for AD
- Microsoft Excel Spreadsheet Interface

PLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership City of Borås, Sweden, 9-11 September 2013

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

WROSE Model Input Screen

X	Microsoft Excel - wrose								
: 🛯	<u>File E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata	<u>W</u> indow <u>H</u> e	lp Ado <u>b</u> e PDF					
In	ΕΠ 💕 🗔 📐 🖓 🕄 🐰 🗈 🙈 - 🖋 🔊 - 🔍 - 🔍 Σ - 🖓 🚮 100% - 🔞 📲 Ε.								
-	H14 \checkmark fx								
	A B C D E F								
1	WASTE & RESOURC	CE OPTIMIS	ATION STR	RATEGY EVA	UATION MO	DEL			
2			W.R.O.S.E						
3	WASTE MATERIAL OR	Quantity o	of Waste Dis	sposed/treate	ed/diverted b	y (tons):			
4	WASTE FRACTION	LANDFILL	LANDFILL	RECYCLING	ANAEROBIC	AEROBIC			
5		DISPOSAL	GAS REC		DIGESTION	COMPOSTING			
6	Newspaper	5453							
7	General mixed paper (CMW)	7234							
8	Scrap Boxes & Cardboard (K4)	11402							
9	Low density polyethylene (LDPE)	2450		User enters waste fraction					
10	High density polyethylene (HDPE)	1401		quantities to b	be diverted or				
11	Polyethylene-terephthalate (PET)	2037		disposed of b	y each strategy				
12	Polypropylene (PP)	1613	L			_J			
13	Polyvinyl Chloride (PVC)	8							
14	Polystyrene (PS)	1101							
15	Glass	6861							
16	Steel Cans/Tins	4245							
17	Aluminium Cans	547							
18	Biogenic Food Waste	36608							
19	Garden Refuse: Green	637							
20	Garden Refuse: Wood	46							
21	Other	32287							
22	Total Waste Diverted/Disposed	113930	0	0	0	0			

IPLA Global Forum 2013 on Sustainable Waste Management for the $\rm 21^{st}$ Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa **Prof Cristina Trois**

WROSE Model Output Screen

× .	Microsoft	Excel	- wrose									
: 🔊	<u>F</u> ile <u>E</u> dit	<u>V</u> iew	<u>I</u> nsert	F <u>o</u> rmat	<u>T</u> ools	<u>D</u> ata	<u>W</u> indow	<u>H</u> elp	Ado <u>b</u> e PDF			
10	😂 🖬 🖁	3 🗃	🛕 i 🗸	' 🕰 I 🐰	🗅 🖻	- 🤝	8 9 - 1	9 +	😣 Σ - 🛓	X↓ 🛄 100%	- 🕐 💾	i c
: 🛌	(†a) (†a) (?)	a 🗠	NI 6	8		V V F	Reply with C	hange	s End Reviev	(
									_	T		
: •		_	£									
		· ·	/x		D		0		D	E	E	
1	14		T & DE	SOLIDO		IMIS		TPA				
2				<u>3000000</u>			WROS	5 F		LOA HOIN INC		
3	WASTE	МАТЕ		R			Greenh	ouse	Gas Emise	ions/Reducti	ons	-
4	WASTE	FRAC	TION		LANDE		LANDFIL		RECYCLING	ANAEROBIC	AEROBIC	\neg
5					DISPOS	AL	GAS RE	c		DIGESTION	COMPOSTIN	IG
6	Newspape	er				0	-7092	.87	0	-	-	
7	General m	ixed pa	aper (CM)	N)		0	-3747	.84	0	-	-	
8	Scrap Boxe	es & Ca	ardboard	(K4)		0	-5781	.53	0	-	-	
9	Low densi	ty polye	ethylene (LDPE)		0	108	.03	0	-	-	
10	High dens	ity poly	ethylene	(HDPE)		0	61	.77	0	-	-	
11	Polyethyler	ne-tere	phthalate	(PET)		0	89	.82	0	-	-	
12	Polypropyl	ene (Pl	P)			0	71	.12	0	-	-	
13	Polyvinyl C	hloride	e (PVC)			0	0	.35	0	-	-	
14	Polystyren	e (PS)				0	48	.55	0	-	-	
15	Glass					0	302	.52	0	-	-	
16	Steel Cans	s/Tins				0	187	.17	0	-	-	
17	Aluminium	Cans				0	24	.12	0	-	-	
18	Biogenic F	ood W	aste			0	6456	.55 -		0		0
19	Garden Re	efuse: (Green			0	-435	.35 -		-		0
20	Garden Re	efuse: \	Nood			0	-47	.16 -		-		0
21	Other					0	1423	.61	0	-	-	
22												
23	Strategy	GHG E	Emissior	ns/		0	-8331	.14	0	0		0
24	Reductio	ns (M1	ſCO₂eq)									
25	Total GH	G Emi	ssions/R	eductio	ns (MTC	O2eq	1)				-8331.	14

Capital & Operational Costs - MRF

Design Capacity (tpd)

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership

IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

Case Study: UMDM

- 7 local municipalities
- 5 landfills currently
- 1 003 084 people
- Population Growth: 0.87%
- Waste Growth: 1.088%
- 213 694 tonnes of Waste per year

Phase A: Inception Report

Phase C: Final Feasibility Study Report

Phase D: Revised Final Feasibility Study Report

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa **Prof Cristina Trois**

Comparison of Waste Streams

eThekwini Commercial

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

UMDM Commercial

Prof Cristina Trois

Assessment of New England Road

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership

Assessment of Marianhill Landfill

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

32

Marianhill Waste Stream

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership

IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois 33

Marianhill Waste Stream

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership

Zero Waste as a vehicle to realise Green Economy in Southern Africa **Prof Cristina Trois**

Marianhill Economic Analysis

Strategy	Quantity Managed/ Produced	Rate	Capital Cost (R)	Operating Cost (R/annum)	Income/Savings (R/annum)
1. LANDFILL DISPOSAL & LFG RECOVERY					
Landfill Gas Recovery System	0.50 MW		1,100,000		
Landfill Disposal operations	122,514 tons	138 R/ton		16,906,932	
Landfill Gas Recovery operating costs	7,051,800 kWh	0.018\$/kWh		866,758	
Sale of Electricity	7,051,800 kWh	0.047\$/kWh			2,263,201
Certified Emission Reductions	5,758 MTCO2e	14\$/MTCO2e			550,458
Total			1,100,000	17,773,690	2,813,659
2. MRF & RECYCLING					
Materials Recycling Facility Capital Cost	385 tpd	30,668\$/tpd	33,848,875		
Materials Recycling Facility Operating Cost	385 tpd	2,815\$/tpd		9,899,276	
Sale of Recyclables	21,549 tons	R/kg			19,598,660
Landfill airspace savings	47,122 m ³	62.5R/m ³			2,945,125
Total			33,848,875	9,899,276	22,543,785
3. ANAEROBIC DIGESTION					
Anaerobic Digestion Plant Capital Cost	49,153 tons	15.24\$ million	104,066,340		
Anaerobic Digestion Plant Operating Cost	49,153 tons	28.2\$/ton		9,465,084	
Sale of electricity	18, 128, 413 kWh	0.047\$/kWh			5,818,124
Sale of Compost	29,492 tons	250R/ton			7,372,950
Certified Emissions Reductions	21,379 MTCO2e	14\$/MTCO2e			2,043,797
Landfill airspace savings	45,872 m ³	62.5R/m ³			2,867,000
Total			104,066,340	9,465,084	18,101,871
4. AEROBIC COMPOSTING					
Composting Facility Capital Cost	57,847 tons	2E+06R/180tpd	3,066,667		
Composting Facility Operating Cost	57,847 tons	152.05R/ton		9,123,000	
Sale of compost	43,385 tons	250R/ton			10,846,313
Certified Emissions Reductions	12,753 MTCO2e	14 \$/MTCO2			1,219,182
Landfill airspace savings	54,799 m ³	62.5R/m ³			3,424,938
Total			3,066,667	9,123,000	15,490,433

IPLA Global Forum 2013 on Sustainable Waste Management for the $21^{\rm st}$ Century Cities - Building Sustainable and Resilient Cities through Partnership

New England Economic Analysis

Strategy	Quantity Managed/	Rate	Capital Cost	Operating Cost	Income/Savings
	Produced		(R)	(R/annum)	(R/annum)
1. LANDFILL DISPOSAL & LFG RECOVERY					
Landfill Gas Recovery System	0.50 MW		1,100,000		
Landfill Disposal operations	113,930 tons	138 R/ton		15,722,340	
Landfill Gas Recovery operating costs	7,051,800 kWh	0.018\$/kWh		866,758	
Sale of Electricity	7,051,800 kWh	0.047\$/kWh			2,263,201
Certified Emission Reductions	8,331 MTCO2e	14 \$/MTCO ₂ e			796,448
Total			1,100,000	16,589,089	3,059,649
2. MRF & RECYCLING					
Materials Recycling Facility Capital Cost	385 tpd	30,668\$/tpd	33,848,875		
Materials Recycling Facility Operating Cost	385 tpd	2,815\$/tpd		9,899,276	
Sale of Recyclables	17,740 tons	R/kg			15,714,260
Landfill airspace savings	39,774 m ³	62.5R/m ³			2,485,875
Total			33,848,875	9,899,276	18,200,135
3. ANAEROBIC DIGESTION					
Anaerobic Digestion Plant Capital Cost	36,608 tons	13.26 \$ million	90,545,910		
Anaerobic Digestion Plant Operating Cost	36,608 tons	32.4 \$/ton		8,099,278	
Sale of electricity	13,501,616 kWh	0.047 \$/kWh			4,333,202
Sale of Compost	21,965 tons	250 R/ton			5,491,200
Certified Emissions Reductions	-15,922 MTCO2e	14 \$/MTCO2e			1,522,172
Landfill airspace savings	34,164 m ³	62.5 R/m ³			2,135,250
Total			90,545,910	8,099,278	13,481,824
4. AEROBIC COMPOSTING					
Composting Facility Capital Cost	37,291 tons	2E+06R/180tpd	2,000,000		
Composting Facility Operating Cost	37,291 tons	152.05R/ton		6,082,000	
Sale of compost	27,968 tons	250R/ton			6,992,063
Certified Emissions Reductions	8,221 MTCO2e	14\$/MTCO ₂ e			785,944
Landfill airspace savings	34,865 m ³	62.5R/m ³			2,179,063
Total			2,000,000	6,082,000	9,957,070

IPLA Global Forum 2013 on Sustainable Waste Management for the $\rm 21^{st}$ Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa **Prof Cristina Trois**

Potential for Landfill Biogas-to-Energy...

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa **Prof Cristina Trois**

Dean and Head of School of Engineering, University of KwaZulu-Natal, South Africa

38

Anaerobic Digestion of Food Waste

- Partnership: UKZN-Don't Waste Services-THRIP
- O.5 MW (12 MWh) AD Plant on Howard College Campus – to process 40-60 tons of macerated food waste and food processing waste per day
- Emissions reduction = approx. 18 000 tons of CO₂ eq. per annum
- Digestate/compost material = approx. 95 tons per month
- Partnership: DubeTrade Port-UKZN-THRIP (Dti)
- O.5 MW (12 MWh) AD Plant in the AgriZone to process 35-40 tons of macerated food waste and food processing waste per day
- Emissions reduction = approx. 15 000 tons of CO₂ eq. per annum
- Digestate/compost material = approx. 95 tons per month

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership A City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

39

Energy Recovery from Farm Waste

Biomass potential in KwaZulu-Natal, South Africa

High levels of animal husbandry with poor waste management practices

- □ Significant quantities of organic waste available
- Significant potential to reduce current GHG emissions
- Paradigm shift: Waste as an opportunity!

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

Anaerobic Digestion of Food Waste

- Prefeasibility study conducted using Induced Blanket/Bed Reactor AD Plant and industry standards for Biogas production from cow manure
 - Biogas used to run gas powered electrical generators electricity used for farm/dairy operation (financial benefit)
 - Reduced GHG emissions
- NOT Financially feasible under baseline assumptions
 - Cows kept in open pastures (no waste collection), and rotary dairy system highly efficient (low level of waste collection)

Advanced Rotary Dairy system with cow retention time of approx. 11 minutes

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

Prefeasibility Assessment – Piggery AD Plant in Ashburton, KZN

- 5000 pigs producing approx.
 9000 tonnes of wet organic
 waste per annum
- Biogas yield of 694m³ per day
- Energy output per year approx.342 168 kWh

FINANCIAL FEASIBILITY IDENTIFIED

Energy cost offset = internal rate of approx. return 7%

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

Waste-to-energy in rural SA

- Case study UKZN-WRC Project (k5/1955)
- New application to LOTTO for 10 small AD plants (Mkuze Game Reserve)
- Objective: improve living standards in rural households through integrated waste, water and energy sustainable technology solutions
- Integrating rainwater harvesting, livestock fodder production and biogas generation in rural areas of South Africa
- 4 pilot study households in each province

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa Prof Cristina Trois

Conclusions

- Need for GIS mapping of regional landfills
- Comprehensive waste stream analysis and carbon footprint assessment required to develop projects
- Need for an integrated sustainable waste management decisionmaking framework for local authorities
- Need for ad hoc capacity building within municipalities
- Scenario and Technology Assessment (through the use of tools like WROSE) prior to financial commitment, towards a sound bankable feasibility report
- Streamline success of projects through the creation of synergic special purpose vehicles between private and public actors

THANK YOU

Prof Cristina Trois

Dean and Head of School of Engineering University of KwaZulu-Natal, Durban, South Africa Tel: +27-31-260-3055/65

troisc@ukzn.ac.za

IPLA Global Forum 2013 on Sustainable Waste Management for the 21st Century Cities - Building Sustainable and Resilient Cities through Partnership IPLA City of Borås, Sweden, 9-11 September 2013

Zero Waste as a vehicle to realise Green Economy in Southern Africa **Prof Cristina Trois**