

Material Flow Analysis as a Base for Benchmarking in Waste Management

Astrid Allesch, Paul H. Brunner

Benchmarking in Waste Management

 Is a well suited assessment tool to compare and optimize waste management systems from different regions and countries.

Material Flow Analysis

A science-policy interface for technical and scientific input to policy decisions.

Project Goals

- Evaluate the waste management system
- Assess if given goals are achieved
- Assess the economic viability
- Support decision makers and serve as a strategic base

3/12

Science-policy dialog requires all stakeholders

Why material flow analysis for benchmarking?

Mass balance principle

- Transparent way to inform stakeholders and researchers
- Complete and consistent database for subsequent assessment

Common uniform base

- As a base for evaluation
- For planning and operating systems and developing strategies

MFA on goods and substances level

 For comprehensively assessing if a chosen system reaches designated waste management goals

MFA - Why level of goods?

bi.iwr

MFA - Why level of substances?

- To identify the distribution of beneficial and hazardous substances
- To identify changes in stock of beneficial and hazardous substances
- To characterize chemical compositions of waste and transfers to possible products
- To look for potentially hidden substances

Framework for Benchmarking

Goal	Sub-goal	Indicator	
To protect humans, environment and animals	protect humans	human toxicity	kg/year
	protect environment and animals	acidification	kg SO _{2-equ} ./year
		photochemical pollution	kg NMVOC _{equ} /year
		ozone depletion	kg CFC-11 _{equ} /year
		eutrophication	kg P _{equ} /year
To minimize air pollution and gases affecting the climate	minimize air pollution	dioxins, Furans, SO _{2,} CO, NH _{3,} NO _{x,} fine dust	kg/year
	minimize gases affecting the climate	CH _{4,} N ₂ O, CO _{2,} FCKWs	kg CO _{2-equ} /year
To conserve resources	conserve landfill volume	landfilled waste	m³∕year
	conserve resources	resources produced	kg/year
	conserve water	water used	m³∕year
	conserve area	area used	m²/year
	conserve energy	energy produced	MWh/year
To ensure that only such waste remains as can be stored without danger for future generations	reduce heavy metals in landfills	heavy metals	kg/year
	obtain autarky	treatment/disposal capacity	t/year
	reduce long-term emission from landfills into water	TOC, NH4 and heavy metals	kg/year
	reduce long-term emission from landfills into air	CH ₄ , CO ₂	kg CO _{2-equ} /year/m ²
To ensure that the materials recycled do not present		hazardous substances	mg/kg

a greater risk than comparable primary raw materials

8/12

Benchmarking - Example: Conservation of resources

- Recycling rates 10% – 90%
- Fraction of domestic consumption 0.5 – 50%

Benchmarking - Overall results

10/12

Economic analysis

8.4 Inhabitants; 17 Million tons of waste

DLIW

• Material Flow Analysis

- Mass balance approach key for transparency and reproducibility
- Presents excellent base for communication between stakeholders and researchers
- Base for planning and operating of waste management systems
- Provides background information in aggregated form and visualizes systems

Benchmarking – Methodology

- Tool to assess waste management systems
- Interrelations become visible
 - between economy and waste management
 - between different goals
- Improvements can be indicated for
 - Waste management stakeholders
 - Research community

→ provide evidence-based data for policymakers → Support policymakers with sound scientific methodology

THANK YOU FOR YOUR ATTENTION!