

Yoshitsugu Hayashi
Distinguished Professor, Chubu University
Executive Committee Member, Club of Rome
Ex-President, World Conference on Transport Research Society
林 良嗣

中部大学卓越教授 ローマクラブ本部執行委員・日本支部長 世界交通学会前会長

Transforming Asia through Smart Cities and Sustainable Urban Development: Towards New Normal Mobility

UNCRD Training Workshop on Smart Cities
28 August 2023, Nagoya

Content 1

Lessons from "The Limits to Growth"

1st Club of Rome Report 1972

"The Limits to Growth" (3 million seller)

Jorgen Randers, J. W. Forester, Donera Meadows, Denis Meadows, William Behrens

Source: raunerlibrary.blogspot.com

The Limits to Growth (1972)

- A System Dynamics Simulation -

Source: BEYOND THE LIMITS, Meadows, et al.;

Chelsea Green Publishing Company, 1992. ISBN 0-930031-62-8.

Phone: 800-639-4099 or 603-448-0317; FAX: 603-448-2576.

Lessons from "The Limits to Growth"

- Club of Rome
 - > Established in 1968 by Aurelio Peccei (Vice-Chair of Olivetti & Exec. of FIAT)
 - > 100 full members, operated by 12 Executive Committee members
- The Limit to Growth (1972): Club of Rome 1st report Lesson from "daily *doubling* Water Lotus"
 - ➤ Today may be "The Last Day to Recover" → "Resilience"
- Origin of SDGs
 - Saburo Okita, CoR member proposed to United Nations to establish WCED (World Commission of Environment and Development=Brundtland Com.)
 - ➤ Report "Our Common Future (1987)" → "Sustainable Development"
 - "Erath Charter" (2000)
 - > "SDGs" (2015)

Content 2

The Limits to Growth in "Mobility"

Extreme Life in a City of "8hrs Commuting a Day" - Bangkok 1993 -

A School Boy waiting for Bus at 20km Suburb at 4:30 am (1993)

Extracted by Hayashi from "Bangkok Post 4 Sept 1993"

Understanding "The Limits to Motorization" along Economic Development Stages

Mobility Transformation

- Emergence from 20 Century's Stupid Habits -

20th century Stupid Mobility -> for Mass Economy with High Carbon

21st century Smart Mobility -> for People with High QOL/Low Carbon

Damages caused by Mobility (World, Thailand)

- Effects on Mortality, Health & Well-Being -

Content 3

Carbon Neutral

Change in Temperature resulting in damages as Heat Wave, Heavy Rainfall, Drought

12

Paris Agreement (← IPCC 5th report)

- Difference in damages between 1.5 °C and 2.0 °C rise -

	1.5℃	2°C	2°C/1.5°C
Population hit by serious heat- wave at least once 5 years	14%	37%	2.6 times
Summer without Ice in the North Pole	at least once in 100 years	at least once in 10 years	10 times
Sea level rise by 2100	0.40 meters	0.46 meters	0.06 meters rise
Land area is changed to a New Biotic Formation (BIOM)	7%	13%	1.86 times
Crop reduction of Corn in Tropical zones	3%	7%	2.3 times
Coral reef further reduction	70-90%	99%	29%+ worsen
Reduction in marine fisheries	1.5 mil-ton	3 mil-ton	2 times

Can Japan achieve 2050 Carbon Neutral?

- 80% (2050/2020) \rightarrow - 42% (2030/2020) \rightarrow Keeping -5.23%/yr for 30 yrs Possible ?

c.f.) - 8%/yr (2019 -> 2020) under City Lockdown, Stopping Air transport

Content 4

Strategy of "Mobility" toward "Carbon Neutral"

Policy/Technology Solution Options for De-Carbon & Anti-Pollution

(CUTE Matrix)

Strategies Means	AVOID	SHIFT	IMPROVE
Technologies	 Transport oriented development (TOD) Poly-centric development Efficient freight distribution 	 Railways and BRT Interchange improvement among railway, BRT, bus and para-transit modes Facilities for small mobility and pedestrians 	 HB,PHB vechicle E-vehicle Fuel cell/Hydrogen vehicle Biomass fuel Autonomous driving "Smart grid" development
Regulations	Land-use control	 Separation of bus/paratransit trunk and feeder routes Local circulating service Control on driving and parking 	 Emissions standards "Top-runner" approach
Information	TeleworkingOnline shoppingLifestyle change	• MaaS	 "Eco-driving" ITS traffic-flow management Vehicle performance labeling
Economy	Subsidies and taxation to location Anthony D. May eds (Park & ride Cooperative fare systems between modes 	Fuel tax/carbon taxSubsidies and taxation to low-emissions vehicles

Hideo Nakamura, Yoshitsugu Hayashi and Anthony D. May eds (2004)

Goals for new Car Sales

https://www.enecho.meti.go.jp/about/special/johoteikyo/xev 2022now.html

Importance of Shift to EV but The Barriers

- EV shift is important for decarbonization of road transport that shares 50% of world Oil consumption, 170EJ (exajoule=10¹⁸J).
- Is EV the best solution?
- EV emit more emission till water, solar, wind electric generations will be dominant → From Well to Wheel Life-cycle Energy management
- 50% more total Electricity Demand if all vehicles are replaced by EV
- Can we build many more electricity generation, power storage and transmission systems?
- Competitor: Electricity demand for Data Center is estimated to be 100% more total electricity in 2030
- Waste of lithium-ion battery contains chemical and nuclear matters
- →CO2/km Fuel Efficiency based Regulation + Top Runner System

Development of EV Ecosystem

Battery Business Roadmap

- EV Ecosystem
 Development
- Strategic Partnership

- Battery pack
- ESS
 Manufactur
- Recording &

2024

2025

- RKEF & HPAL
 Local cell
- manufacture
 Local
 Precursor &
- Precursor & Cathode Manufacture

New Capital City EV

2026

2030

- Proprietary Battery Technology
- Capacity expansion

- Battery Pack, EV, and Energy Infrastructure (CS & BSS) developed by Internal
- Upstream to Cathode, Battery Cell, and Recycling developed by IBC

Pertamina Group

Note: 14 BSS spread over 7 Pertamina gas stations to serve 500 E2W

Courtesy by Andianto Hidayat (Pertamina, Indonesia)

Content 5

Beyond Carbon Neutral - Wellbeing -

QOL mainstreaming in Transport Planning

- From Mass Economic Efficiency to Individual's Sufficiency
- From Cost-Benefit Analysis to QOL Accessibility Model (Hayashi model)
 - by different Age, Gender, Income level
- Towards SDGs: No one left behind

Hayashi's QOL Accessibility Model

Hayashi's QOL Accessibility Model

Accessible Value

$$A_{ij}^m = V_j^m \cdot e^{-\alpha c_{ij}}$$

- m: QOL factor
- i: Mesh block with residents living in
- j: Mesh block with objective value of QOL factor m
- α^m: Impedance parameter for traveling from mesh block *i* to mesh block *j*
- c_{ij} : Travel cost between mesh block i and mesh block j
- Vjm: Existing value of QOL factor m exists in mesh block j
- **Aijm**: Accessible Value of **Vjm** for residents living in mesh block **i**.

Perceived Value

$$QOL_i^k = \sum W^{mk} A_{ij}^m$$

- k: Population group k with certain socialeconomic attributes
- Wmk: Weight of QOL factor m for person k among all factors
- QOLik: Perceived Value=Quality of life for person k living in mesh block i

Gross Regional Happiness

$$GRH^k = \sum_i P_i^k \cdot QOL_i^k$$

$$GRH = \sum_{l} GRH^{k}$$

Weights between QoL Factors (Singapore)

Young / Female

Young / Male

Middle-aged / Female

Middle-aged / Male

Aged / Female

Aged / Male

QOL Spatial Distribution in Singapore (by age, gender)

Policy Options Transport Network or Compact City –

Total Volume = GRH (Gross Regional Happiness)

Source: Master Thesis of Yong Jian Khoo, supervised by Yoshitsugu Hayashi, Graduate School of Environmental Studies, Nagaya University, 2015

QOL Comparison: Female / Male (Motorway Opening near Mt.Fuji, Japan)

Content 6

Resilience against Natural Disasters and Pandemics

Damages by The Great East Japan earthquake, 2011

Time & Date	14:46 11/03/11
Magnitude	9.0
Earthquake type	Undersea mega-thrust
Death	14,907 (19/05/2011)
Missing	9,041
Injuries	4,799
evacuees	160,672
Tsunami area (km2)	561
Completely destroyed residential buildings	91,150

(Source: Ministry of Internal Affairs and Communications, Statistics department, Japan)

Disaster Resilience

2011 Bangkok Flood Central Region and Industries Submerged for Months

Duration: 149 days Life Loss: 813 deaths

Economic Loss: 48,185 mil US\$

Elevated/Underground Rails are Resilient

Courtesy by Varameth Vivhiensan

Lack of Emergency Management

Resilient Cities and Communities

Regeneration of Community Bonds (Shanghai)

Books: Disaster Resilient Cities

Elsevier, 2016

Akashi 明石書店, 2015

Tsinghua University Press, 2015

Social Distancing Reduced Platform Capacity

ที่มา รฟม.

Social Distancing Reduced Train Capacity

ที่มา รฟม.

UNCRD Workshop on Smart Cities_28Aug2023

"Thais Win" Application

Pandemic Resilience: Learning from COVID-19

COVID-19 Handbook

- Lockdown → 2 hr-City life is not resilient in emergency
- People trust whole metropolitan society less and local community more
- Need for last mile convenient mobility
- Need 3rd place for co-working
- Need for accessibility to service facilities such as hospitals, shops, etc.

Junyi Zhang & Yoshitsugu Hayashi eds, WCTRS-Elsevier Book Series, 715 pages

Content 7

Transforming Work-Life Style for New Normal

QOL-MaaS: Work-Life Style Changer for 21st Century

From JICA/JST SATREPS Project 2018-2024"Smart Transport for Thailand 4.0" (Leader: Yoshitsugu Hayashi)

DX → "QOL MaaS"

Guiding to Max QOL Sequence Plan of Activity 6 Travel

From JICA/JST SATREPS Project 2018-2024"Smart Transport for Thailand 4.0" (Leader: Yoshitsugu Hayashi)

Effects of Location - Time Shift of Activity & Travel

1. Daily Traffic Congestion

2. Hourly CO2 Emission (ton/ 100,000agents)

From JICA/JST SATREPS Project 2018-2024"Smart Transport for Thailand 4.0" (Leader: Yoshitsugu Hayashi)

"Sufficiency" Factor X

Daily Personal Social Cost: (CO2, etc.)

From JICA/JST SATREPS Project 2018-2024"Smart Transport for Thailand 4.0" (Chair: Yoshitsugu Hayashi)

QUALITY OF LIFE ASSESSMENT IN URBAN DEVELOPMENT AND TRANSPORT POLICYMAKING

Edited by Yoshitsugu Hayashi, Hiroyuki Takeshita, and KE Seetha Ram

ASIAN DEVELOPMENT BANK INSTITUTE

New Book

- Just Published, July 2023
- Asian Development BankInstitute Press
- •e-Book: free download
- Editors: Yoshi Hayashi, Hiroyuki Takeshita, K.E.Seetharam
- Authors: include Yoshi Hayashi,
 Werner Rothengatter, Roger
 Vickerman, Yves Crozet, Jamie
 Leather

Strategy for Mobility Transformation

- Solution in Infrastructure Supply-side
 - Railway Improvement
 - EV for Cars, FCV for Heavy Duty Trucks, e-Fuel
 - Generation, Power Storage, Charging of Electricity and Hydrogen
- Solution in Behavior Demand-side
 - Fixed Workplace & Commuting Timing → both Flexible
 - "New Normal Lifestyle" in Post COVID-19 Era
 - "QOL-MaaS"
- QOL
 - GDP (20th Century) → Personal QOL (21st Century)
 - GDP → GNH (Bhutan)
 - High Carbon → De-Carbon (CO₂)
 - "Efficiency" (GDP/ Direct Cost) \rightarrow "Sufficiency" (QOL/ CO₂) \rightarrow SDGs

Sufficient and Inclusive Mobility and Life Better for Everyone!

Thank you for your attention!