Global Trends in Bus Rapid Transit

United Nations Centre for Regional Development

5th Regional EST Forum in Asia

Bangkok, Thailand, 24 August 2010

Viva cities for people

Lloyd Wright

BRT in Asia

Contents

- I. Project costing
- II. Operations and infrastructure
- **III. Vehicles**
- IV. Communications & marketing
- V. Resources

BRT systems worldwide

Latin America Bogotá Curitiba Goiânia Guadalajara Guatemala City Guayaquil León Mexico City Pereira Porto Alegre Quito São Paulo Santiago

North America Boston Cleveland Eugene Los Angeles Miami Ottawa Orlando Pittsburgh York

Asia Ahmedabad Bangkok Beijing Changzhou Chongqing Delhi Guangzhou Hangzhou Jakarta Jinan Kunming Nagoya Pune Seoul Taipei Xiamen Xian Oceania Auckland Adelaide **Brisbane** Svdnev

Europe Amsterdam Bradford Cambridge **Claremont Ferrand** Crawley Eindhoven Edinburgh Essen Istanbul Leeds Lille Lyon Nantes Nice Paris Rouen Toulouse Utrecht Africa Cape Town Johannesburg

Port Flizabeth

Lagos

Part I. Project Costing

Summary of typical planning costs

Plan	Estimated cost
Feasibility study	US\$ 0.5 – 1 million
Project Management	US\$ 1 – 2 million
Operations Plan	US\$ 3 – 4 million
Business Plan	US\$ 3 – 5 million
Marketing & Communications Plan	US\$ 2 – 4 million
Total	US\$ 9.5 – 16 million

Plan	Estimated cost
Preliminary & detailed infrastructure design	10% of construction costs

Implementation	Estimated cost
Civil works	US\$ 4.5 – 7.5 million per km
Trunk stations	US\$ 0.5 – US\$ 1 million per station
Depots	US\$ 15 – US\$ 25 million per depot
Trunk vehicles	US\$ 0.2 – 0.4 million per vehicle
ITS and fare equipment	R 0.07 – 0.15 million per station
Control centre	US\$ 20 – US\$ 30 million
Land acquisition	Variable
Industry compensation	Variable

12Nh

Four systems at approximately the same cost

Sao Paulo Expresso Tiradentes

Sao Paulo

US\$ 26 million per km

Lagos BRT Lite

US\$ 2.7 million per km

System design

Central median stations vs. split stations

Reasons for central median stations

- **1.** Ease of transfers
- 2. Travel time / commercial speed advantages
- 3. Capital cost reductions
- 4. Operating cost reductions
- 5. Legibility / marketing
- 6. Self-enforcing
- 7. Improves pedestrian safety
- 8. Saves road space

Lane enforcement techniques

Road signs and markings

Fines and penalties

- **G** System branding
- **Delineators**

Lane colourisation

Thin film problems

- **Expensive**
- **D** Poor durability
- Dulling of colour

Lane colourisation

Lloyd Wright

Continuously Re-inforced Concrete (CRC)

- Concrete designed for flexural strength of 3.5 MPa
- Concrete thickness varies from 190 to 260 mm
- Optimum colour enhancement at 5% of mix

Vehicle-platform interface

Connecting the customer to the system

Gaps are a safety hazard for all passengers, and especially children, the elderly, and physically disabled

3

Optical alignment to platform

Las Vegas

Lloyd Wright

Rouen

Window marker aligned to street marking

Kassel kerbs

Smooth contact face

Boot shaped profile

Kassel kerbs in Cape Town

Kassel kerb in Amsterdam

Boarding bridges

 Eliminates many of the platform interface problems

Provides greater
 customer ease in
 boarding,
 especially for the
 physically disabled,
 the elderly, and
 children

CD-style boarding bridge

BRT and the FIFA World Cup

Station design and artwork

Johannesburg

Cape Town

Part III. Vehicles

1 1

706

BusWay

. 406 BYB 44

Lloyd Wright

PLACE ONNE HUMEUR

happymeal.fr

High floor vs. Low floor vehicles

High floor

Low entry

Low-entry vehicles

<u>Advantages</u>

- Reduces station costs
- Reduces station visual impact
- Reduces overall length of stations
- Allows easier integration of trunk and feeder services

<u>Disadvantages</u>

- Slightly more costly vehicles
- Some loss of seating
- Maximum vehicle speed of 70 kph (compared to 100 kph for high-floor)

12-meter vehicles

Advantages

- Lower vehicle cost
 per passenger carried
- Improved fuel economy
- Increased ease in vehicle docking
- **G** Superior ride comfort
 - Improved acceleration and deceleration

Modern vehicles

Vehicle interior

Universal access with all feeder vehicles

Real-time information displays at feeder stations

Part IV. Communications & Marketing

Duan Xiaomei, GMTDC

Branding

System branding in Los Angeles

Metro Orange Line It's the Valley's new shortcut.

Celebrity endorsements

System merchandising

Trends defining BRT success

- Median dedicated lanes and central median stations
- ✓ Low-entry vehicles
- ✓ Quality feeder vehicles and stations
- ✓ Kassel kerbs and boarding bridges to ease boarding and alighting
- ✓ Lane colourisation
- ✓ Legible signage
- High-quality pedestrian and bicycle infrastructure integrated into design
- System is fully wheelchair accessible

Part V. Resources

Bus Rapid Transit Planning Guide

3rd Edition:

www.itdp.org/index.php/microsite/brt_planning_guide

Collaborations invited for upcoming 4th edition

Bus Rapid Transit Planning Guide June 2007

Partners ITDP GTZ Viva

Thank you

Lloyd Wright Lwright@vivacities.org

Median stations with route permutations

Vh

Split stations with route permutations

1.h

Mechanical guidance systems

Station design

Feeder vehicles

