Mainstreaming transport cobenefits approach: a practical guide to evaluating transport projects

Jane Romero
Climate Change Group
IGES

Outline

- Overview
- O Why quantify co-benefits?
- How to quantify challenges and options
- Case study Bangkok BRT
- Summary and way forward

"Traffic is not just a line of cars. It is a web of connections. A real solution will look at relationships across the entire road network and all the other systems that are touched by it: our supply chains, our environment, our companies, the way people and communities live and work." IBM 2010 Commuter Pain Survey

The transport co-benefits approach aims to reduce greenhouse gas emissions, prevent environmental pollution, and support sustainable development all at the same time.

Why quantify co-benefits?

everyone appreciates the "co-benefits approach" but operationalizing the concept is perceived as hard work with less incentive

- o the numbers serve as proof to influence better decision-making and implementation
- o if it can be measured, it can be managed
- o the 'proof' can leverage financing

Not a new tool, bringing in more benefits

Transport Co-benefits Guidelines

Available for download at: http://www.cobenefit.org

time savings

vehicle operating costs savings

road safety benefits

air quality improvement

GHG reductions

Time savings

Benefit of travel time saving $BT = BT_o - BT_w$ Total Travel time cost (per year) $BT_i = \sum_{i} \sum_{j} (Q_{ijl} \times T_{ijl} \times \alpha_j) \times 365$

where,

BT: Benefit of travel time saving

 BT_i : Total Travel time cost with/without project

 Q_{iil} : traffic volume for j vehicle type on link l, with/without project (vehicle/day)

 T_{ijl} : average travel time for j vehicle type on link l , with/without project (minute)

 α_i : value of time for j vehicle type (monetary unit/minute*vehicle)

 $i: i = w_{\text{with project}}, i = O_{\text{without project}},$

j : vehicle type

 $l_{: link}$

Unit value of time per vehicle type (in US \$/vehicle-minute)

Vehicle type (j)	Japan	Thailand
Passenger car	0.44	0.061
Bus	4.10	0.031
Van	0.53	-
Small truck	0.52	-
Ordinary truck	0.70	0.031
Motorcycle	-	0.010

Note: Based on 2008 data and prices

Vehicle operating costs savings

Benefit of vehicle operating cost reduction $BR = BR_o - BR_w$ Total Travel time cost (per year) $BR_i = \sum_i \sum_l (Q_{ijl} \times L_l \times \beta_j) \times 365$

where,

 $oldsymbol{BI}$: Benefit of vehicle operating cost reduction

B: Total vehicle operating cost with/without project

 Q_{ii} traffic volume for j vehicle type on link l, with/without project (vehicle/day)

 I_t : Link length of link l (km)

 β : value of vehicle operating cost for i vehicle type (monetary unit/minute*vehicle)

 $i: i = \mathcal{N}_{with project}, i = \mathcal{C}_{without project},$

j: vehicle type

 $l_{: link}$

Ordinary road (DID) (Unit: US \$/vehicle km)

	`				
Speed (km/hour)	Passenger car	Bus	Ave. passenger car class (incl. bus)	Small truck	Ordinary truck
5	0.47	1.20	0.48	0.36	0.82
10	0.34	1.01	0.35	0.31	0.67
15	0.30	0.94	0.31	0.29	0.60
20	0.27	0.89	0.28	0.27	0.55
25	0.26	0.86	0.27	0.26	0.51
30	0.25	0.84	0.26	0.25	0.48
35	0.24	0.82	0.25	0.25	0.45
40	0.24	0.81	0.25	0.24	0.44
45	0.24	0.81	0.24	0.24	0.43
50	0.23	0.80	0.24	0.24	0.42
55	0.23	0.80	0.24	0.24	0.41
60	0.24	0.80	0.24	0.24	0.41

Note1) Prices in 200

Note2) Unit cost between classes of speed in the table should be calculated by linear interpolation.

Note3) Values of 60km/h are used respectively, in the case of speeds beyond 60km/h

Framework of accident loss calculation

Estimation of emission reductions

Bottom up

$$\begin{aligned} \mathsf{ER}_{i} &= \Sigma (\mathsf{BE}_{i,k} - \mathsf{PE}_{i,k}) \\ \mathsf{BE}_{i,k} &= \Sigma (\mathsf{Q}_{\mathsf{BL},j,k} \times \mathsf{L}_{k} \times \mathsf{EF}_{i,j,\,\mathsf{VBL},k}) \\ \mathsf{PE}_{i,k} &= \Sigma (\mathsf{Q}_{\mathsf{PJ},j,k} \times \mathsf{L}_{k} \times \mathsf{EF}_{i,j,\,\mathsf{VPJ},k}) \end{aligned}$$

Traffic volume

Emission factor

Top down

ER =
$$\Sigma(BE - PE)$$

BE = $\Sigma(FC_{BL,m} \times NCV_m \times Ef_m)$
PE = $(FC_{Pl,m} \times NCV_m \times Ef_m)$

Amount of fuel

Transport Co-benefits Calculator

Case study: Bangkok BRT

	2006 Base case	2011 Without BRT scenario	2011 With BRT scenario	Difference between With and Without BRT scenarios
Time Cost (Baht/year)	467,088,340,223	372,519,518,162	369,352,291,793	-3,167,226,369
Operating Cost (Baht/year)	758,591,194,274	771,676,100,219	766,519,611,334	-5,156,488,885
Loss by Accident (Baht/year)*	143,215,180,809	138,838,420,713	137,465,291,897	-1,373,128,816

^{*}Based on Japanese values

Emission reductions

13

	Pollutants	Emissions or emission reductions (t/day for CO ₂ , kg/day for others)		
		2006		
	NOx	2011 (Without BRT)	327,389	
		2011 (With BRT)	325,930	
		Reduction (Without –With BRT)	1,458	
		Reduction rate ((Without –With BRT)/Without BRT)	0.45%	
		2006		
Air pollutants	со	2011 (Without BRT)	1,173,604	
		2011 (With BRT)	1,160,929	
		Reduction (Without –With BRT)	12,676	
		Reduction rate ((Without –With BRT)/Without BRT)	1.08	
		2006		
	PM	2011 (Without BRT)	13,858	
P		2011 (With BRT)	13,843	
		Reduction (Without –With BRT)	15	
		Reduction rate ((Without –With BRT)/Without BRT)	0.11%	
		2006		
Greenhouse gas	CO ₂	2011 (Without BRT)	67,327	
		2011 (With BRT)	66,903	
		Reduction (Without –With BRT)	424	
		Reduction rate ((Without –With BRT)/Without BRT)	0.63%	

Summary and way forward

- o The transport co-benefits guidelines and calculator are easy-to-use tools to empower local transport practitioners in mainstreaming co-benefits approach in their planning and policy making processes
- Data is often not available but possible to start with initial 'default' values
- Data collection and management should be strengthened to access external financing and support

Asian Co-benefits Partnership

Bringing Climate and Development Together in Asia

Thank you for your attention.

Email: romero@iges.or.jp

Websites: www.iges.or.jp | www.cobenefit.org