Integrated Conference of BAQ 2014 and Intergovernmental 8th Regional EST Forum in Asia Session Topic: EST Plenary Session 7

The High Shift Scenario: How Cities can save \$100 Trillion by 2050 for More Public Transport, Walking and Cycling with Lower Car Use

Lew Fulton University of California, Davis

co-author: Michael Replogle, ITDP

Study Inspiration: Rio+20 Voluntary Commitments

- 8 MDBs: \$175b for more sustainable transport
- UITP: double public transport mode share by 2025
- ITDP: promote *BRT and TOD Standards,* national transport policy best practice, and evaluate impacts of 17 Rio+20 sustainable transport commitments

- Analysis led by UC Davis, in cooperation with International Energy Agency (IEA) and supported by ITDP, with assistance of International Council on Clean Transportation (ICCT)
- Funded by Ford Foundation, ClimateWorks, Hewlett Foundations
- Project advisory committee includes World Bank, InterAmerican Development Bank, Asian Development Bank, ICCT, EMBARQ, IEA, and others
- Findings of Phase I summary report presented now
- Documentation report forthcoming October 2014

- Global travel projected to 2050 using an urban model adapted from the International Energy Agency's Mobility Model
- World modeled at level of 33 countries/regions
- Detailed reporting for 13 groupings with major economies like the U.S., China and India broken out.
- More detailed breakouts and analysis of urban travel modes than MoMo
- Modal shift based on potential to boost capacity of transit/NMT systems to allow fewer cars

- "High Shift" Scenario:
 - Projection of cities by size through 2050
 - Increased rapid transit km per million population
 - Encourage walking and cycling for short trips
 - E-bikes expand in lieu of motor cycles and some cars
 - Preserve total projected growth in personal mobility in low and middle income (non-OECD) countries to 2050
 - Cut car travel in cities by half by 2050 in High Shift scenario compared to Baseline Scenario
- "Baseline" Scenario aligns with the IEA 4 degree scenario
 - About 25% improvement in fuel economy to 2050 (slight additional improvements in High Shift scenario)
 - No shift away from car growth trends

• Other modes static or slow growth

Rapid Transit per Resident (RTR) to 2050 : combined length of transit systems per capita to 2050

· ·						-			-	·
			4DS				High Shift			
	2010		2030 2050				2030 2050			
	OECD	non-OECD	OECD	non-OECD	OECD	non-OECD	OECD	non-OECD	OECD	non-OECD
Metro	7.1	1.8	6.8	1.5	6.9	1.4	8.8	4.8	10.7	6.4
BRT	0.6	0.7	0.8	1.0	1.0	1.1	4.6	9.0	8.1	13.5
Tram/LRT	11.5	3.0	10.9	2.5	11.1	2.3	13.2	4.0	15.2	4.6
Commuter rail	32.5	1.9	31.0	1.6	31.5	1.4	42.3	10.2	52.6	14.8

The Base and High Shift Scenario

Doubling of public transport and NMT urban travel and about a halving of LDV travel in 2050 v. Baseline

High Shift Scenario - travel per capita

Total travel in non-OECD preserved, travel reduced some in OECD

High Shift Scenario - Spotlight on Asia

Rapid growth in urban bus travel, big drop in ICE 2W travel

High Shift Scenario - travel per capita for Asia

Convergence toward 8000 kms per person per year

Public and Private Direct Costs

High Shift Scenario lowers total costs in all categories

- Vehicle purchase costs (all modes)
- System infrastructure costs (road, rail)
- Vehicle and system operating costs
- Fuel costs (liquid fuel, electricity)

Cumulative Savings of \$100 trillion 2010-2050

Asia High Shift: vehicle purchase costs - excluding LDVs

Big increases in rail car costs

Asia High Shift: vehicle purchase costs including LDVs

...but massive increases in car purchase expenditures in Asia

Asia Infrastructure Costs - excluding roads/parking

 Large rail infrastructure costs; lower sidewalk costs offset higher bike lane expenditures

Asia Infrastructure costs including roads/parking costs

• Road/parking construction costs dominate in Asia

Although the scenario saves over \$100 T through 2050, there are challenges:

- •The outright expenditures on transit systems would have to rise several fold in coming decades
- •Cutting car growth will be extremely challenging
- •Policies to discourage car use and raise revenues for transit investments are key
- •This can include fuel taxes, vehicle taxes, road user charges

•If 20% of what would have been spent on cars/roads can be "re-routed" to transit and NMT, this will provide most of what is needed.

The work continues:

- •Currently fleshing out a high BRT scenario
- •Will examine the net effects on government revenues and expenditures in different scenarios
- •Data is still week deep dives in individual cities, countries and regions would help
- •A policy analysis to achieve HS is desirable
- •An similar analysis of freight and intercity travel would be valuable

Thank you for your attention!

Lew Fulton

Co-Director, STEPS Program, UC Davis

UCDAVIS SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

Estimating Direct Cost of Scenarios

- Vehicle purchase costs (all modes)
- System infrastructure costs (road, rail)
- Vehicle and system operating costs
- Fuel costs (liquid fuel, electricity)

Urban Car Stock by Scenario, Year, Region

Note: there are an added 500 million non-urban cars in 2050, so total global car stock is 1.6b in High Shift vs. 2.3b in 2050 Baseline, a 30% reduction

Combined length of transit systems to 2050

Vehicle purchase costs across all modes - without cars/2Ws

Urban bus costs dominate though BRT/Rail car costs rise in HS case toward 2050

Vehicle purchase costs across all modes - costs in specific year

Car purchase costs dominate, drop substantially in High Shift

What drives costs: annual purchases of vehicles

Numbers of LDVs, 2 wheelers, e-bikes and Bicycles are in 10's of millions...

What drives costs: annual purchase of vehicles

...while BRT and rail car purchases are a few thousand even in HS

Infrastructure investment costs across all modes

 Road/parking costs dominate, followed by metros and side walks (foot paths)

Annual Costs

nstitute for Transportatio